Document IIF
Diagnostic précoce des défaillances graduelles d’un système de pompe à chaleur aérothermique en utilisant des techniques d’apprentissage approfondi.
Gradual fault early stage diagnosis for air source heat pump system using deep learning techniques.
Résumé
Due to slow development and no evident characteristic of gradual fault in air source heat pump (ASHP) systems, existing methods are insufficient in detecting gradual fault at early stages, which causes many ASHPs to be running under minor gradual fault. Gradual fault in systems, including minor gradual fault, will decrease efficiency, increase energy consumption, reduce environmental thermal comfort, and in- crease carbon emissions. This paper proposes a novel gradual fault diagnosis approach, which mainly includes three contributions. Firstly, for ASHP modeling, a convolution-sequence (C-S) model is proposed; Secondly, a pre-process thinking for fault diagnosis is proposed, which makes the diagnosis method have a more suitable dataset; Finally, a convolutional neural network with an optimized convolution kernel (one-dimensional convolution kernel) is used to diagnose the specific failure for ASHP. The optimal hyper- parameter selection is identified with many attempts. Furthermore, a detailed comparison between different fault diagnosis method models is also studied. In the last part of the results and discussion, the outcome of the diagnosis effectiveness by the C-S model accuracy is obtained. Therefore, the proposed method has a desirable effect on gradual fault detection and diagnosis, which means it is a feasible and high-precision detection and diagnosis method for gradual fault in ASHP systems.
Documents disponibles
Format PDF
Pages : 63-72
Disponible
Prix public
20 €
Prix membre*
Gratuit
* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)
Détails
- Titre original : Gradual fault early stage diagnosis for air source heat pump system using deep learning techniques.
- Identifiant de la fiche : 30026964
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 107
- Date d'édition : 11/2019
- DOI : http://dx.doi.org/10.1016/j.ijrefrig.2019.07.020
Liens
Voir d'autres articles du même numéro (32)
Voir la source
Indexation
- Thèmes : Techniques des pompes à chaleur
- Mots-clés : Réseau neuronal artificiel; Anomalie; Système aérothermique; Simulation; Pompe à chaleur; Détection
-
Zwiekszenie efektywnosci energetycznej powietrz...
- Auteurs : GRZEBIELEC A., SZABLOWSKI L., OCIEPA M.
- Date : 10/2015
- Langues : Polonais
- Source : Chlodnictwo - vol. 50 - n. 10-11
Voir la fiche
-
Deep learning-based refrigerant charge fault de...
- Auteurs : EOM Y. H., HONG S. B., YOO J. W., KIM M. S.
- Date : 31/08/2021
- Langues : Anglais
- Source : 13th IEA Heat Pump Conference 2021: Heat Pumps – Mission for the Green World. Conference proceedings [full papers]
- Formats : PDF
Voir la fiche
-
Forecasting of a ground-coupled heat pump perfo...
- Auteurs : ESEN H., INALLI M., SENGUR A., et al.
- Date : 04/2008
- Langues : Anglais
- Source : International Journal of thermal Sciences - vol. 47 - n. 4
Voir la fiche
-
A novel defrosting initiation strategy based on...
- Auteurs : WANG W., ZHOU Q., TIAN G., WANG Y., ZHAO Z., CAO F.
- Date : 08/2021
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 128
- Formats : PDF
Voir la fiche
-
Prévisions de la performance hivernale des syst...
- Auteurs : LIU Z., ZHANG X., CHEN B., et al.
- Date : 11/2007
- Langues : Chinois
- Source : HV & AC - vol. 37 - n. 205
- Formats : PDF
Voir la fiche