Recommandé par l'IIF / Document IIF
Une nouvelle stratégie de déclenchement du dégivrage basée sur un réseau neuronal convolutif pour une pompe à chaleur aérothermique.
A novel defrosting initiation strategy based on convolutional neural network for air-source heat pump.
Résumé
Defrosting is an essential and vital part of the air source heat pump (ASHP) to restore the heating capacity and operating performance during the wintertime when the humid ambient air can cause frosting on the surface of the evaporator. A timely and effective defrosting control strategy that determines the defrosting start and exit time is critical for improving the system operating performance. However, current time-based defrosting methods that make defrosting decisions are mostly dependent on the outside ambient condition, potentially causing the mal-defrosting. The developed demand-based defrosting methods are usually unstable or costly for implementation. This paper presents a novel defrosting initiating control strategy based on the convolutional neural network (CNN) for ASHP. The CNN defrosting mechanism is based on the heat pump system's internal operating parameters rather than the outside ambient condition detection. In this paper, a CNN defrosting model is first built and then trained to learn the defrosting logic from an existing time-based method. An experiment of ASHP is conducted to acquire the dataset for CNN training. The CNN is evaluated under 6 different cases, and the maximal and minimal predicted error is 12% and 2% respectively. This demonstrates that CNN is capable to provide accurate frosting predictions and make correct defrosting initiating decisions. It can successfully capture the defrosting logic of time-based method, while avoiding the mal-defrosting caused by time-based method.
Documents disponibles
Format PDF
Pages : 95-103
Disponible
Prix public
20 €
Prix membre*
Gratuit
* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)
Détails
- Titre original : A novel defrosting initiation strategy based on convolutional neural network for air-source heat pump.
- Identifiant de la fiche : 30028520
- Langues : Anglais
- Sujet : Technologie
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 128
- Date d'édition : 08/2021
- DOI : http://dx.doi.org/10.1016/j.ijrefrig.2021.04.001
- Document disponible en consultation à la bibliothèque du siège de l'IIF uniquement.
Liens
Voir d'autres articles du même numéro (27)
Voir la source
-
Frost detection with neural networks: determini...
- Auteurs : KLINGEBIEL J., SALOMON P., VERING C., MÜLLER D.
- Date : 15/05/2023
- Langues : Anglais
- Source : 14th IEA Heat Pump Conference 2023, Chicago, Illinois.
- Formats : PDF
Voir la fiche
-
Zwiekszenie efektywnosci energetycznej powietrz...
- Auteurs : GRZEBIELEC A., SZABLOWSKI L., OCIEPA M.
- Date : 10/2015
- Langues : Polonais
- Source : Chlodnictwo - vol. 50 - n. 10-11
Voir la fiche
-
Gradual fault early stage diagnosis for air sou...
- Auteurs : SUN Z., JIN H., GU J., et al.
- Date : 11/2019
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 107
- Formats : PDF
Voir la fiche
-
A review of the effects and mitigation of frost...
- Auteurs : MASHHADIAN A., ISMAIL T., BACH C. K., ALEXANDER A.
- Date : 10/07/2022
- Langues : Anglais
- Source : 2022 Purdue Conferences. 19th International Refrigeration and Air-Conditioning Conference at Purdue.
- Formats : PDF
Voir la fiche
-
Development of a continuous heating technology ...
- Auteurs : TAKENAKA N., ISHIMURA K., WATANABE K., WAKAMOTO S.
- Date : 21/08/2023
- Langues : Anglais
- Source : Proceedings of the 26th IIR International Congress of Refrigeration: Paris , France, August 21-25, 2023.
- Formats : PDF
Voir la fiche