Recommandé par l'IIF / Document IIF
Étude comparative de diverses méthodes d’apprentissage automatique pour la prédiction des performances d’un condenseur évaporatif.
A comparative study of various machine learning methods for performance prediction of an evaporative condenser.
Auteurs : BEHNAM P., FAEGH M., SHAFII M. B., KHIADANI M.
Type d'article : Article de la RIF
Résumé
Evaporative condensers are regarded as highly-efficient and eco-friendly heat exchangers in refrigeration systems. Data-driven methods can play a key role in performance prediction of evaporative condensers, conducted without the complexity of theoretical analysis. In this study, four machine learning models including multi-layer perceptron artificial neural network (ANNMLP), support vector regression (SVR), decision tree (DT), and random forest (RF) models have been employed to predict heat transfer rate and overall heat transfer coefficient of a small-scale evaporative condenser functioning under a wide range of working conditions. A set of experimental tests were conducted, where inlet air dry/wet-bulb temperatures, spraying water and condenser saturation temperatures, refrigerant, and air flow rates were considered as main influencing parameters. The results show that the ANNMLP followed by SVR, and RF models possess the best generalization capability. Further, the dataset size analysis indicates that SVR is the best model to predict heat transfer rate for small dataset sizes. Additionally, feature importance analysis by the RF model reveals that refrigerant flow rate is the most influencing parameter.
Documents disponibles
Format PDF
Pages : 280-290
Disponible
Prix public
20 €
Prix membre*
Gratuit
* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)
Détails
- Titre original : A comparative study of various machine learning methods for performance prediction of an evaporative condenser.
- Identifiant de la fiche : 30028305
- Langues : Anglais
- Sujet : Technologie
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 126
- Date d'édition : 06/2021
- DOI : http://dx.doi.org/10.1016/j.ijrefrig.2021.02.009
Liens
Voir d'autres articles du même numéro (25)
Voir la source
-
Evaluating the generality of machine learning-b...
- Auteurs : SHOUREHDELI S. A., GHOLIPOUR H.
- Date : 03/2024
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 159
- Formats : PDF
Voir la fiche
-
A neural-network approach to develop algebraic ...
- Auteurs : LIN L., GAO L., HWANG Y., KEDZIERSKI M.
- Date : 10/07/2022
- Langues : Anglais
- Source : 2022 Purdue Conferences. 19th International Refrigeration and Air-Conditioning Conference at Purdue.
- Formats : PDF
Voir la fiche
-
Comparative analysis of an evaporative condense...
- Auteurs : ERTUNC H. M., HOSOZ M.
- Date : 12/2008
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 31 - n. 8
- Formats : PDF
Voir la fiche
-
Data driven assessment of a small scale evapora...
- Auteurs : REICHERT H., DONNI R., SCHNEIDER P., ACUNHA I. C. Jr
- Date : 07/2020
- Langues :
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 115
- Formats : PDF
Voir la fiche
-
Artificial neural network analysis of a refrige...
- Auteurs : ERTUNC H. M., HOSOZ M.
- Date : 04/2006
- Langues : Anglais
- Source : Applied Thermal Engineering - vol. 26 - n. 5-6
Voir la fiche