Étude d’un système à débit de frigorigène variable (VRF) en mode refroidissement au moyen d’essais sur le terrain et de modélisation basée sur l’apprentissage automatique.
Investigation of VRF System under Cooling Mode through Field Testing and Machine Learning-based Modeling.
Résumé
Variable Refrigerant Flow (VRF) system is widely known for its flexibility and energy efficiency. Nevertheless, most of the research has focused on experiments in laboratory. Limited papers discussed the field test case. To enhance operational efficiency, we investigated details of cooling operational behavior through field testing and developed a machine learning-based model for a better control algorithm. We conducted the test in a university office building. The power consumption under cooling mode was investigated. In addition, a Support Vector Regression algorithm-based model has been built to predict the power consumption of the VRF system. The penalty parameters in the SVR model have been optimized to decrease the generalization error of the model. We found that the compressor frequency and condensing temperature are the two most important parameters for the accurate. The mean relative error of the model was 7% for outdoor unit power consumption when we compared experimental data and modeling results. The modeling results showed that if the compressor frequency, outdoor fan speed, and condensing temperature were the same, the power consumption should be the same.
Documents disponibles
Format PDF
Pages : 9 p.
Disponible
Gratuit
Détails
- Titre original : Investigation of VRF System under Cooling Mode through Field Testing and Machine Learning-based Modeling.
- Identifiant de la fiche : 30030034
- Langues : Anglais
- Sujet : Technologie
- Source : 13th IEA Heat Pump Conference 2021: Heat Pumps – Mission for the Green World. Conference proceedings [full papers]
- Date d'édition : 31/08/2021
Liens
Voir d'autres communications du même compte rendu (198)
Voir le compte rendu de la conférence
-
Machine-learning-based compressor models: A cas...
- Auteurs : WAN H., CAO T., HWANG Y., CHANG S. D., YOON Y. J.
- Date : 03/2021
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 123
- Formats : PDF
Voir la fiche
-
Exploration of intelligent HVAC operation strat...
- Auteurs : LIU X.
- Date : 2020
- Langues : Anglais
- Formats : PDF
Voir la fiche
-
On Hourly Forecasting Heating Energy Consumptio...
- Auteurs : METSÄ-EEROLA I., PULKKINEN J., NIEMITALO O., KOSKELA O.
- Date : 07/2022
- Langues : Anglais
- Source : Energies - vol. 15 - n. 14
- Formats : PDF
Voir la fiche
-
DESIGN FOR ENERGY EFFICIENCY.
- Auteurs : ROWE D. M.
- Date : 1990
- Langues : Anglais
- Source : AIRAH J. - vol. 44 - n. 12
Voir la fiche
-
A variable refrigerant flow (VRF) air-condition...
- Auteurs : CHENG H., MU W., CHENG Y., CHEN H., XING L.
- Date : 21/08/2023
- Langues : Anglais
- Source : Proceedings of the 26th IIR International Congress of Refrigeration: Paris , France, August 21-25, 2023.
- Formats : PDF
Voir la fiche