Recommandé par l'IIF / Document IIF
Modèles de compresseurs basés sur l'apprentissage automatique: une étude de cas pour les systèmes à débit de frigorigène variable.
Machine-learning-based compressor models: A case study for variable refrigerant flow systems.
Auteurs : WAN H., CAO T., HWANG Y., CHANG S. D., YOON Y. J.
Type d'article : Article de la RIF
Résumé
Conventionally, researchers conducted field tests and modeling works for the Variable Refrigerant Flow system separately. In this study, we used the compressor model as a case study to illustrate a novel approach to integrate field tests and modeling works. Field tests in an office building were conducted to collect data. For mass flow rate prediction, three traditional models, including the 20-coefficient model, the efficiency-based model, and the efficiency-based 20-coefficient model, and three machine-learning-based models including Support Vector Regression, Neural Network, and Random Forest, were investigated and compared. We found that the efficiency-based 20-coefficient model and the Support Vector Regression model had a higher accuracy (the mean relative errors were 0.11% and 0.15%, and the coefficient of variation of the root mean-square-error were 0.20 and 0.23) and lower uncertainty within 0.2 g•s−1 for steady-state operation prediction. However, all six models failed to predict accurately the beginning part of the transient process. A tens-of-seconds delay existed between the predicted values and the experiment values. We applied the Convolutional-Neural-Network-based model to address this problem. The mean relative error of this model is reduced to 2% for dynamic simulation. In summary, we recommend the efficiency-based 20-coefficient model, and the Support Vector Regression model for the steady-state compressor model development, while the Convolutional-Neural-Network-based model is recommended for transient model development. For the power consumption prediction, 20-coefficient and Neural Network models can predict transient data well. The process of predicting the capacity is the same as the process of mass flow rate prediction.
Documents disponibles
Format PDF
Pages : 23-33
Disponible
Prix public
20 €
Prix membre*
Gratuit
* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)
Détails
- Titre original : Machine-learning-based compressor models: A case study for variable refrigerant flow systems.
- Identifiant de la fiche : 30028150
- Langues : Anglais
- Sujet : Technologie
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 123
- Date d'édition : 03/2021
- DOI : http://dx.doi.org/10.1016/j.ijrefrig.2020.12.003
- Document disponible en consultation à la bibliothèque du siège de l'IIF uniquement.
Liens
Voir d'autres articles du même numéro (19)
Voir la source
Indexation
-
Informed machine learning to develop a reduced ...
- Auteurs : YOUSAF S., BRADSHAW C. R., KAMALAPURKAR R., SAN O.
- Date : 2022
- Langues : Anglais
- Source : 2022 Purdue Conferences. 19th International Refrigeration and Air-Conditioning Conference at Purdue.
- Formats : PDF
Voir la fiche
-
On Hourly Forecasting Heating Energy Consumptio...
- Auteurs : METSÄ-EEROLA I., PULKKINEN J., NIEMITALO O., KOSKELA O.
- Date : 07/2022
- Langues : Anglais
- Source : Energies - vol. 15 - n. 14
- Formats : PDF
Voir la fiche
-
Preference-driven personalized thermal control ...
- Auteurs : ZHANG H.
- Date : 12/2023
- Langues : Anglais
- Formats : PDF
Voir la fiche
-
Development of dynamic modeling framework using...
- Auteurs : WAN H., CAO T., HWANG Y., CHIN S.
- Date : 05/2021
- Langues : Anglais
- Source : 2021 Purdue Conferences. 18th International Refrigeration and Air-Conditioning Conference at Purdue.
- Formats : PDF
Voir la fiche
-
Model-free HVAC control in buildings: a review.
- Auteurs : MICHAILIDIS P., MICHAILIDIS I., VAMVAKAS D., KOSMATOPOULOS E.
- Date : 10/2023
- Langues : Anglais
- Source : Energies - vol. 16 - n. 20
- Formats : PDF
Voir la fiche