• Accueil
  • Publications

  • Machine-learning-based compressor models: A cas...

Recommandé par l'IIF / Document IIF

Machine-learning-based compressor models: A case study for variable refrigerant flow systems.

Modèles de compresseurs basés sur l'apprentissage automatique: une étude de cas pour les systèmes à débit de frigorigène variable.

Auteurs : WAN H., CAO T., HWANG Y., CHANG S. D., YOON Y. J.

Type d'article : Article de la RIF

Résumé

Conventionally, researchers conducted field tests and modeling works for the Variable Refrigerant Flow system separately. In this study, we used the compressor model as a case study to illustrate a novel approach to integrate field tests and modeling works. Field tests in an office building were conducted to collect data. For mass flow rate prediction, three traditional models, including the 20-coefficient model, the efficiency-based model, and the efficiency-based 20-coefficient model, and three machine-learning-based models including Support Vector Regression, Neural Network, and Random Forest, were investigated and compared. We found that the efficiency-based 20-coefficient model and the Support Vector Regression model had a higher accuracy (the mean relative errors were 0.11% and 0.15%, and the coefficient of variation of the root mean-square-error were 0.20 and 0.23) and lower uncertainty within 0.2 g•s−1 for steady-state operation prediction. However, all six models failed to predict accurately the beginning part of the transient process. A tens-of-seconds delay existed between the predicted values and the experiment values. We applied the Convolutional-Neural-Network-based model to address this problem. The mean relative error of this model is reduced to 2% for dynamic simulation. In summary, we recommend the efficiency-based 20-coefficient model, and the Support Vector Regression model for the steady-state compressor model development, while the Convolutional-Neural-Network-based model is recommended for transient model development. For the power consumption prediction, 20-coefficient and Neural Network models can predict transient data well. The process of predicting the capacity is the same as the process of mass flow rate prediction.

Documents disponibles

Format PDF

Pages : 23-33

Disponible

  • Prix public

    15 €

  • Prix membre*

    Gratuit

* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)

Détails

  • Titre original : Machine-learning-based compressor models: A case study for variable refrigerant flow systems.
  • Identifiant de la fiche : 30028150
  • Langues : Anglais
  • Sujet : Technologie
  • Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 123
  • Date d'édition : 03/2021
  • DOI : http://dx.doi.org/10.1016/j.ijrefrig.2020.12.003
  • Disponible à la bibliothèque de l'IIF

Liens


Voir d'autres articles du même numéro (19)
Voir la source