
Document IIF
Exergy assessment of a refrigeration plant using computational intelligence based on hybrid learning methods
Évaluation de l’exergie d’une installation frigorifique par intelligence computationnelle basée sur des méthodes d’apprentissage hybrides.
Auteurs : BELMAN-FLORES J. M., BARROSO-MALDONADO J. M., LEDESMA S., et al.
Type d'article : Article, Article de la RIF
Résumé
In this study, a method to model the exergetic behavior of a refrigeration system using some techniques from computational intelligence is proposed. The input parameters of the model are: the compressor rotation speed, the volumetric flow rates and the temperatures of the secondary fluids. The artificial neural network was trained using a hybrid learning method based on Simulated Annealing and Levenberg Marquardt method. Two independent neural networks were designed to visualize and analyze the exergy destruction and exergy efficiency for each component of a vapor compression system. The relative errors produced during the validation of the model were within ±10%. From the application simulation, it was concluded that the major exergy destruction is located at the compressor and at the condenser. Additionally, it was observed that the parameters that most influence the exergetic behavior of the system are: the compressor rotation speed and the inlet temperatures of the secondary fluids.
Documents disponibles
Format PDF
Pages : 35-44
Disponible
Prix public
15 €
Prix membre*
Gratuit
* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)
Détails
- Titre original : Exergy assessment of a refrigeration plant using computational intelligence based on hybrid learning methods
- Identifiant de la fiche : 30023515
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 88
- Date d'édition : 04/2018
- DOI : http://dx.doi.org/10.1016/j.ijrefrig.2018.01.004
Liens
Voir d'autres articles du même numéro (57)
Voir la source
Indexation
- Thèmes : Systèmes à compression
- Mots-clés : Système frigorifique; Exergie; Ordinateur; Réseau neuronal artificiel; Système à compression; Simulation
-
A low data requirement model of a variable-spee...
- Auteurs : NAVARRO-ESBRÍ J., BERBEGALL V., VERDU G., et al.
- Date : 12/2007
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 30 - n. 8
- Formats : PDF
Voir la fiche
-
A neuro-fuzzy identification of non-linear tran...
- Auteurs : FRANCO I. C., DALL'AGNOL M., COSTA T. V., et al.
- Date : 12/2011
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 34 - n. 8
- Formats : PDF
Voir la fiche
-
On-line training modelling and control using ne...
- Auteurs : TUMIALAN J. A. B., HERNANDEZ O. S. M., BANDARRA FILHO E. P., et al.
- Date : 21/07/2007
- Langues : Anglais
- Source : ICR 2007. Refrigeration Creates the Future. Proceedings of the 22nd IIR International Congress of Refrigeration.
- Formats : PDF
Voir la fiche
-
Loss-efficiency model of single and variable-sp...
- Auteurs : YANG L., ZHAO L. X., ZHANG C. L., et al.
- Date : 09/2009
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 32 - n. 6
- Formats : PDF
Voir la fiche
-
Fault and sensor error diagnostic strategies fo...
- Auteurs : KOCYIGIT N.
- Date : 02/2015
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 50
- Formats : PDF
Voir la fiche