Document IIF

Evaluation de la performance d'un condenseur à tubes ailetés à l'aide de réseaux neuronaux.

Fin-and-tube condenser performance evaluation using neural networks.

Auteurs : ZHAO L. X., ZHANG C. L.

Type d'article : Article, Article de la RIF

Résumé

The paper presents neural network approach to performance evaluation of the fin-and-tube air-cooled condensers which are widely used in air-conditioning and refrigeration systems. Inputs of the neural network include refrigerant and air-flow rates, refrigerant inlet temperature and saturated temperature, and entering air dry-bulb temperature. Outputs of the neural network consist of the heating capacity and the pressure drops on both refrigerant and air sides. The multi-input multi-output (MIMO) neural network is separated into multi-input single-output (MISO) neural networks for training. Afterwards, the trained MISO neural networks are combined into a MIMO neural network, which indicates that the number of training data sets is determined by the biggest MISO neural network not the whole MIMO network. Compared with a validated first-principle model, the standard deviations of neural network models are less than 1.9%, and all errors fall into plus or minus 5%.

Documents disponibles

Format PDF

Pages : pp. 625-634

Disponible

  • Prix public

    20 €

  • Prix membre*

    Gratuit

* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)

Détails

  • Titre original : Fin-and-tube condenser performance evaluation using neural networks.
  • Identifiant de la fiche : 2010-0090
  • Langues : Anglais
  • Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 33 - n. 3
  • Date d'édition : 05/2010

Liens


Voir d'autres articles du même numéro (21)
Voir la source