• Accueil
  • Publications

  • Machine learning methods for prediction of hot ...

Recommandé par l'IIF / Document IIF

Machine learning methods for prediction of hot water demands in integrated R744 system for hotels.

Méthodes d'apprentissage automatique pour la prévision des demandes en eau chaude dans un système intégré au R744 pour les hôtels.

Numéro : 1080

Auteurs : ZHANG Z., SMITT S. M., EIKEVIK T. M., HAFNER A.

Résumé

Load forecasting can help modern energy systems achieve more efficient operation by means of more accurate peak power shaving and more reliable control. This paper proposes a framework based on machine learning algorithms to forecast the hot water usage for a Norwegian hotel. The framework is tested on the real data from an integrated R744 HVAC and domestic hot water system with a 6 m3 thermal storage.
Recorded operational data and ambient temperatures are utilized to build several forecasting models that can predict demands with high accuracy. The hot water usage accounts for 52 % of hotels’ heat load, where strategic accumulation of the hot water storage can improve the overall system performance. Charging the hot water storage according to three-hour-ahead demand predictions presents significant savings potential.
This work can facilitate a demand management strategy and thus improve the energy efficiency of the integrated 744 system.

Documents disponibles

Machine learning methods for prediction of hot water demands in integrated R744 system for hotels

Pages : 6

Disponible

  • Prix public

    20 €

  • Prix membre*

    Gratuit

* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)

Détails

  • Titre original : Machine learning methods for prediction of hot water demands in integrated R744 system for hotels.
  • Identifiant de la fiche : 30027986
  • Langues : Anglais
  • Sujet : Technologie
  • Source : 14th IIR-Gustav Lorentzen Conference on Natural Refrigerants(GL2020). Proceedings. Kyoto, Japon, December 7-9th 2020.
  • Date d'édition : 07/12/2020
  • DOI : http://dx.doi.org/10.18462/iir.gl.2020.1080

Liens


Voir d'autres communications du même compte rendu (120)
Voir le compte rendu de la conférence