Document IIF
Modèle thermodynamique unifié pour calculer le COP de divers cycles de pompe à chaleur à sorption: adsorption, absorption, résorption, et réactions cristallines en plusieurs étapes.
Unified thermodynamic model to calculate COP of diverse sorption heat pump cycles: Adsorption, absorption, resorption, and multistep crystalline reactions.
Auteurs : ZHU C., GLUESENKAMP K. R., YANG Z., et al.
Type d'article : Article, Article de la RIF
Résumé
A straightforward thermodynamic model is developed in this work to analyze the efficiency limit of diverse sorption systems. A method is presented to quantify the dead thermal mass of heat exchangers. Solid and liquid sorbents based on chemisorption or physical adsorption are accommodated. Four possible single-effect configurations are considered: basic absorption or adsorption (separate desorber, absorber, condenser, and evaporator); separate condenser/evaporator (two identical sorbent-containing reactors with a condenser and a separate direct expansion evaporator); combined condenser/evaporator (one salt-containing reactor with a combined condenser/evaporator module); and resorption (two sorbent-containing reactors, each with a different sorbent). The analytical model was verified against an empirical heat and mass transfer model derived from component experimental results. It was then used to evaluate and determine the optimal design for an ammoniate salt-based solid/gas sorption heat pump for a space heating application. The effects on system performance were evaluated with respect to different working pairs, dead thermal mass factors, and system operating temperatures. The effect of reactor dead mass as well as heat recovery on system performance was also studied for each configuration. Based on the analysis in this work, an ammonia resorption cycle using LiCl/NaBr as the working pair was found to be the most suitable single-effect cycle for space heating applications. The maximum cycle heating coefficient of performance for the design conditions was 1.50 with 50% heat recovery and 1.34 without heat recovery.
Documents disponibles
Format PDF
Pages : 382-392
Disponible
Prix public
20 €
Prix membre*
Gratuit
* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)
Détails
- Titre original : Unified thermodynamic model to calculate COP of diverse sorption heat pump cycles: Adsorption, absorption, resorption, and multistep crystalline reactions.
- Identifiant de la fiche : 30025521
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 99
- Date d'édition : 03/2019
- DOI : http://dx.doi.org/10.1016/j.ijrefrig.2018.12.021
Liens
Voir d'autres articles du même numéro (45)
Voir la source
-
Coabsorbent cycles.
- Auteurs : STAICOVICI M. D.
- Date : 29/05/2006
- Langues : Anglais
- Source : 7th IIR-Gustav Lorentzen Conference on Natural Working Fluids (GL2006). Proceedings
- Formats : PDF
Voir la fiche
-
Development of a two-stage absorption-resorptio...
- Auteurs : JIA T., DAI Y.
- Date : 24/08/2019
- Langues : Anglais
- Source : Proceedings of the 25th IIR International Congress of Refrigeration: Montréal , Canada, August 24-30, 2019.
- Formats : PDF
Voir la fiche
-
Parametric studies on ammonia-water compression...
- Auteurs : AGARWAL R. S., PRATIHAR A. K., KAUSHIK S. C.
- Date : 07/09/2008
- Langues : Anglais
- Source : 8th IIR-Gustav Lorentzen Conference on Natural Working Fluids (GL2008)
- Formats : PDF
Voir la fiche
-
Performance optimization for the resorption hea...
- Auteurs : PORNEALA S., IOSIFESCU C.
- Date : 07/05/2009
- Langues : Anglais
- Source : 3th Conference on Ammonia Refrigeration Technology. Proceedings: Ohrid, North Macedonia, May 7-9, 2009.
- Formats : PDF
Voir la fiche
-
Dynamic modelling of the combined heat and mass...
- Auteurs : MILTKAU T., DAWOUD B.
- Date : 08/2002
- Langues : Anglais
- Source : International Journal of thermal Sciences - vol. 41 - n. 8
Voir la fiche