• Accueil
  • Publications

  • Improved genetic algorithm-based prediction of ...

Document IIF

Improved genetic algorithm-based prediction of a CO2 micro-channel gas-cooler against experimental data in automobile air conditioning system.

Prévision améliorée, basée sur un algorithme génétique, d’un refroidisseur de gaz à micro-canaux au CO2 par rapport à des données expérimentales dans un système de conditionnement d’air automobile.

Auteurs : YANG J., YU B., CHEN J.

Type d'article : Article, Article de la RIF

Résumé

For the prevailing CO2 micro-channel gas-cooler (MCGC) mathematical modeling research, a big challenge for an efficient numerical model is the trade-off between fast calculation and high-precision considering the specific properties of CO2 . The main purpose of this work is to propose a regression method with multiple variables for CO2 MCGC model based on the combination of Distributed Parameter Model (DPM) and Genetic algorithm (GA). The GA based prediction model of MCGC is established, which takes cor- relation coefficients and mean squared error into consideration. A test rig of CO2 MCGC is developed, and the experimental data used to validate the MCGC model are collected. The fixed-point iteration algorithm is utilized to reduce the complexity of simulation to accelerate the iteration speed. Moreover, an improved Taylor series expansion-based method for fast calculation of working fluid properties was proposed. The model precision was analyzed by comparing the prediction results with conducted experimental data. The improved CO2-to-air MCGC model enables to predict refrigerant outlet temperature and pressure drop within a maximum deviation of 1.2 °C and 2 kPa against the experimental data.

Documents disponibles

Format PDF

Pages : 517-525

Disponible

  • Prix public

    15 €

  • Prix membre*

    Gratuit

* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)

Détails

  • Titre original : Improved genetic algorithm-based prediction of a CO2 micro-channel gas-cooler against experimental data in automobile air conditioning system.
  • Identifiant de la fiche : 30027017
  • Langues : Anglais
  • Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 106
  • Date d'édition : 10/2019
  • DOI : http://dx.doi.org/10.1016/j.ijrefrig.2019.05.017

Liens


Voir d'autres articles du même numéro (54)
Voir la source