Résumé
This paper compares the accuracy and computation times of two widely used modelling techniques, i.e. time series analysis and artificial neural network (ANN), for one-hour-ahead prediction of chiller power consumption. A linear Autoregressive Integrated Moving Average (ARIMA) model, a nonlinear Self-Excited Threshold Autoregressive (SETAR) model and two ANN models were built for the chillers installed in the tallest commercial building in Hong Kong. Clustering analysis is employed to preprocess the chiller power data prior to the building of time series models, resulting in four typical 2-day clusters from one-month of chiller power consumption data. Two ANN models are developed from the unclustered data.
The results show that the modified ANN model is the best performer, with a mean absolute percentage error (MAPE) below 5% for the out-of-sample predictions, but consumes the most computation time of over 200s compared with 10s for time series models. It was also found that clustering analysis clearly improves the performance of the time series model. The nonlinear SETAR model, however, does not perform better than the linear ARIMA model. Trade-off between prediction accuracy and computation time must be considered when selecting the appropriate prediction model of chiller power consumption in practice.
Documents disponibles
Format PDF
Pages : 11 p.
Disponible
Prix public
20 €
Prix membre*
15 €
* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)
Détails
- Titre original : Prediction of chiller power consumption using time series analysis and artificial neural networks.
- Identifiant de la fiche : 30009340
- Langues : Anglais
- Source : Clima 2013. 11th REHVA World Congress and 8th International Conference on Indoor Air Quality, Ventilation and Energy Conservation in Buildings.
- Date d'édition : 16/06/2013
Liens
Voir d'autres communications du même compte rendu (424)
Voir le compte rendu de la conférence
Indexation
-
Global sensitivity analysis applied to total en...
- Auteurs : RUIZ R., BERTAGNOLIO S., LEMORT V.
- Date : 16/07/2012
- Langues : Anglais
- Source : 2012 Purdue Conferences. 2nd International High Performance Buildings Conference at Purdue.
- Formats : PDF
Voir la fiche
-
Modelování spotreb energií budov.
- Auteurs : ŠIROKÝ J., FABIAN J.
- Date : 09/2015
- Langues : Tchèque
- Source : Vytápení Vetrání Instalace - vol. 24 - n. 4
- Formats : PDF
Voir la fiche
-
A Python-based toolbox for model predictive con...
- Auteurs : ARROYO J. G., HEIJDE B. van der, SPIESSENS A., et al.
- Date : 09/07/2018
- Langues : Anglais
- Source : 2018 Purdue Conferences. 5th International High Performance Buildings Conference at Purdue.
- Formats : PDF
Voir la fiche
-
Identifying peer groups in a multifamily reside...
- Auteurs : HAM S. H., KARAVA P.
- Date : 09/07/2018
- Langues : Anglais
- Source : 2018 Purdue Conferences. 5th International High Performance Buildings Conference at Purdue.
- Formats : PDF
Voir la fiche
-
Impact of shading devices, ventilation and ligh...
- Auteurs : ALI-TOUDERT F.
- Date : 16/06/2013
- Langues : Anglais
- Source : Clima 2013. 11th REHVA World Congress and 8th International Conference on Indoor Air Quality, Ventilation and Energy Conservation in Buildings.
- Formats : PDF
Voir la fiche