Document IIF
Recherche sur la stratégie de diagnostic des défaillances du système de conditionnement d’air basée sur la démodulation des signaux et le modèle BPNN-PCA.
Research on fault diagnosis strategy of air-conditioning system based on signal demodulation and BPNN-PCA.
Résumé
An efficient fault diagnosis strategy is crucial for the operation of air conditioning systems. In this paper, a novel fault diagnosis strategy based on the signal demodulation method and deep learning model is proposed for a small sample set's fault diagnosis. The potential application of the novel method in air conditioning systems has been discussed through three fault experiments and model evaluation indicators. The signal demodulation method based on principal component analysis (DPCA) is applied in the field of image enhancement innovatively. Compared with the time-domain sample set, the DPCA sample set has stronger features and higher discrimination. The correct rate of the model using the DPCA sample set has been improved by 10.44 %, the loss rate has been reduced by 34.68 %, and the running time has been reduced by 57.13 %. The Back Propagation Neural Network- Principal Component Analysis (BPNN-PCA) model is applied to air conditioning fault diagnosis. Compared with the traditional BPNN and the CART model, the BPNN-PCA model has better fault diagnosis performance and computational efficiency. Through the test and the model performance evaluation indicators, the model optimization strategy has been proposed, and its effectiveness has been verified. This lays the foundation for the optimization and improvement of the model.
Documents disponibles
Format PDF
Pages : 11
Disponible
Prix public
20 €
Prix membre*
Gratuit
* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)
Détails
- Titre original : Research on fault diagnosis strategy of air-conditioning system based on signal demodulation and BPNN-PCA.
- Identifiant de la fiche : 30032118
- Langues : Anglais
- Sujet : Technologie
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 158
- Date d'édition : 02/2024
- DOI : http://dx.doi.org/10.1016/j.ijrefrig.2023.12.008
Liens
Voir d'autres articles du même numéro (36)
Voir la source
Indexation
- Thèmes : Conditionnement d'air pour le confort
- Mots-clés : Conditionnement d'air; Apprentissage automatique; Détection; Panne; Modèle; Optimisation
-
A comprehensive review: Fault detection, diagno...
- Auteurs : SINGH V., MATHUR J., BHATIA A.
- Date : 12/2022
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 144
- Formats : PDF
Voir la fiche
-
A variable refrigerant flow (VRF) air-condition...
- Auteurs : CHENG H., MU W., CHENG Y., CHEN H., XING L.
- Date : 21/08/2023
- Langues : Anglais
- Source : Proceedings of the 26th IIR International Congress of Refrigeration: Paris , France, August 21-25, 2023.
- Formats : PDF
Voir la fiche
-
Data and knowledge fusion-driven Bayesian netwo...
- Auteurs : WU D., YANG H., XU K., MENG X., YIN S., ZHU C., JIN X.
- Date : 05/2024
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 161
- Formats : PDF
Voir la fiche
-
A platform-based product family design method u...
- Auteurs : KOBAYASHI T., HAMADA S., NAKAGAWA N., IKEDA H., HATTORI H., KODAMA T., ZHOU X., LU Y., NAGAI H.
- Date : 2022
- Langues : Anglais
- Source : 2022 Purdue Conferences. 19th International Refrigeration and Air-Conditioning Conference at Purdue.
- Formats : PDF
Voir la fiche
-
A study on the quantitative single and dual fau...
- Auteurs : KIM D., KANG S., YOO J., KIM D. K., YOUN B.
- Date : 11/2021
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 131
- Formats : PDF
Voir la fiche