Document IIF

Recherches sur la pression de refoulement optimale dans les pompes à chaleur au CO2 à l’aide de réseaux de neurones de type GMDH et PSO-BP—Partie A: Modélisation théorique.

Investigations on optimal discharge pressure in CO2 heat pumps using the GMDH and PSO-BP type neural network—Part A: Theoretical modeling.

Auteurs : YIN X., CAO F., WANG J., et al.

Type d'article : Article, Article de la RIF

Résumé

Discharge pressure is an important factor that heavily affects the system COP in the transcritical CO 2 heat pump. In most cases, it is commonly confirmed by the empirical correlations or calculated by the mathematical model according to a single operation condition, thus leading to the prediction error or lengthy time. In this paper, a novel model using the statistical method known as the group method of data handling-type (GMDH) and PSO-BP-type (Particle-Swarm-Optimization and Back-Propagation) neural network was developed to predict the optimal discharge pressure. The relevance of all the parameters to the optimal discharge pressure was investigated orderly. Results showed that the new model had the highest accuracy compared to the current correlations. The relative error was around 1.6% while the error of traditional methods ranged from 11.1% to 44.9%. Therefore, the CO 2 heat pump could work better in the optimal COP operation condition with the novel statistical model.

Documents disponibles

Format PDF

Pages : 549-557

Disponible

  • Prix public

    20 €

  • Prix membre*

    Gratuit

* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)

Détails

  • Titre original : Investigations on optimal discharge pressure in CO2 heat pumps using the GMDH and PSO-BP type neural network—Part A: Theoretical modeling.
  • Identifiant de la fiche : 30027020
  • Langues : Anglais
  • Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 106
  • Date d'édition : 10/2019
  • DOI : http://dx.doi.org/10.1016/j.ijrefrig.2019.04.027

Liens


Voir d'autres articles du même numéro (54)
Voir la source