Document IIF

Réseau neuronal artificiel pour la capacité thermique isobare résiduelle des frigorigènes liquides HFC et HFO.

An artificial neural network for the residual isobaric heat capacity of liquid HFC and HFO refrigerants.

Auteurs : GAO N., WANG X., XUAN Y., et al.

Type d'article : Article, Article de la RIF

Résumé

In this work, a feed-forward artificial neural network (ANN) was developed for the calculation of isobaric heat capacity of pure HFC and HFO refrigerants in liquid phase. First of all, a total of 1142 available experimental data points for different pure HFC or HFO refrigerants were collected and evaluated before being used to train and test the network. By a trial-and-error method, optimum structural of the network was found out to be an input layer using four dimensionless input parameters, one hidden layer with 34 neurons, and an output layer with reduced residual heat capacity as output. The ANN was applied for 12 different refrigerants, and the predicted isobaric heat capacity showed satisfactory agreement with experimental data. The overall average absolute deviation (AAD %) and maximum absolute deviation (MAD %) were 0.383% and 5.92% respectively.

Documents disponibles

Format PDF

Pages : 381-387

Disponible

  • Prix public

    20 €

  • Prix membre*

    Gratuit

* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)

Détails

  • Titre original : An artificial neural network for the residual isobaric heat capacity of liquid HFC and HFO refrigerants.
  • Identifiant de la fiche : 30025410
  • Langues : Anglais
  • Sujet : Alternatives aux HFC
  • Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 98
  • Date d'édition : 02/2019
  • DOI : http://dx.doi.org/10.1016/j.ijrefrig.2018.10.016

Liens


Voir d'autres articles du même numéro (51)
Voir la source