Document IIF
Simulation des performances et diagnostic des états défectueux des systèmes frigorifiques à cycle à air des avions civils.
Performance simulation and diagnosis of faulty states in air-cycle refrigeration systems in civil aircrafts.
Résumé
In the present study, performance simulation models and diagnosis method of faulty states in air-cycle refrigeration systems in civil aircrafts are developed, and the effects of the training data set on the diagnosis accuracy were analyzed. A base model for normal state simulation of air-cycle refrigeration system (ACS) was established based on the existing method with several modifications to improve accuracy and performance. Dedicated models for faulty states were developed according to the causes of fault. Based on the established models, a data set was generated. Preliminary training of multiple two-layer neural network models is performed with the existing data set, and the trained model achieved a validation accuracy of 99.00 % which confirms the feasibility of using double-layer neural network for fault identification and classification based on simulation data. The effects of the training data set to the model are analyzed, and it was concluded that: a data set of about 50,000 entries can be used to train a satisfactory diagnostic model; the proportion of normal state data needs to be reduced appropriately to improve the sensitivity of the model to faulty states; it is possible to largely reduce the number of sensors with smaller effect to the diagnosis accuracy.
Documents disponibles
Format PDF
Pages : p. 232-242
Disponible
Prix public
20 €
Prix membre*
Gratuit
* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)
Détails
- Titre original : Performance simulation and diagnosis of faulty states in air-cycle refrigeration systems in civil aircrafts.
- Identifiant de la fiche : 30032071
- Langues : Anglais
- Sujet : Technologie
- Source : International Journal of Refrigeration - Revue Internationale du Froid - Vol. 156
- Date d'édition : 12/2023
- DOI : http://dx.doi.org/10.1016/j.ijrefrig.2023.10.006
Liens
Voir d'autres articles du même numéro (26)
Voir la source
Indexation
-
Fault detection and diagnosis of a refrigeratio...
- Auteurs : LIANG Q., HAN H., CUI X., et al.
- Date : 16/08/2015
- Langues : Anglais
- Source : Proceedings of the 24th IIR International Congress of Refrigeration: Yokohama, Japan, August 16-22, 2015.
- Formats : PDF
Voir la fiche
-
Performance improvement of CO2 two-p...
- Auteurs : LIU G., ZHAO H., DENG J., WANG L., ZHANG H.
- Date : 10/2023
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 154
- Formats : PDF
Voir la fiche
-
Developing computationally efficient artificial...
- Auteurs : HAIDER M., ELBEL S.
- Date : 2022
- Langues : Anglais
- Source : 2022 Purdue Conferences. 19th International Refrigeration and Air-Conditioning Conference at Purdue.
- Formats : PDF
Voir la fiche
-
Fault diagnosis for sensors in HVAC systems usi...
- Auteurs : DU Z., JIN X., FAN B.
- Date : 20/05/2009
- Langues : Anglais
- Source : ACRA-2009. The proceedings of the 4th Asian conference on refrigeration and air conditioning: May 20-22, 2009, Taipei, R.O.C.
- Formats : PDF
Voir la fiche
-
Fault detection and diagnosis in chillers using...
- Auteurs : GU B., WANG Z. Y., JING B. Y.
- Date : 22/04/2003
- Langues : Anglais
- Source : Cryogenics and refrigeration. Proceedings of ICCR 2003.
Voir la fiche