Simulation numérique des procédés thermodynamiques pour le façonnage de feuilles d’aluminium à des températures cryogéniques et comparaison avec des résultats expérimentaux.
A numerical simulation of thermodynamic processes for cryogenic metal forming of aluminum sheets and comparison with experimental results.
Auteurs : REICHL C., SCHNEIDER R., HOHENAUER W., et al.
Type d'article : Article
Résumé
Forming at cryogenic temperatures provides a significant improvement in formability of aluminum sheets. This offers the potential for light, complex and highly integrated one-piece components to be produced out of aluminum alloys at sub-zero temperatures. This would allow weight reduction, environmental conservation and cost reduction of a car body to give one example in the automotive industry. For temperature supported processes special forming tools and cooling strategies are required to be able to reach and maintain process stability. Time dependent numerical simulations of the thermodynamic processes of cryogenic sheet metal forming covering all aspects of heat transfer through conduction, convection and radiation play a vital role in the design and development of future tools and are presented for several geometries. Cooling (and heating) strategies (including selection of the number of cooling loops and their relative positioning) in a Nakajima testing tool were evaluated using computational fluid dynamics. These simulations were performed with static and transient solvers to demonstrate the extraction of tool surface temperature distributions on different forming tool geometries. Comparisons of predicted temperature characteristics of an aluminum sheet and experimentally determined temperature distributions were made. The temperature distribution of the surface of an aluminum sheet could be predicted with high accuracy. Further, the influence of the tool size on the parameters temperature transfer times and temperature homogeneity was examined by introducing a scaling factor of the forming tool. It became evident, that the size ratio between the aluminum sheet thickness and the tool contact area has a major influence on these parameters. Finally, further simulations were carried out using a forming tool for representative shaped car body components to show the effects of multiple cooling loops and different cooling strategies.
Détails
- Titre original : A numerical simulation of thermodynamic processes for cryogenic metal forming of aluminum sheets and comparison with experimental results.
- Identifiant de la fiche : 30021069
- Langues : Anglais
- Source : Applied Thermal Engineering - vol. 113
- Date d'édition : 25/02/2017
- DOI : http://dx.doi.org/10.1016/j.applthermaleng.2016.11.090
Liens
Voir d'autres articles du même numéro (24)
Voir la source
Indexation
-
MODELLING COOLING DOWN OF TUBULAR GEOMETRIES TO...
- Auteurs : REICHEL W., AGSTEN R.
- Date : 1981
- Langues : Anglais
- Source : Cryogenics - vol. 21 - n. 6
Voir la fiche
-
Experimental and numerical results in closed an...
- Auteurs : CHATAIN D., VALLCORBA R.
- Date : 04/1997
- Langues : Anglais
- Source : Cryogenics - vol. 37 - n. 4
Voir la fiche
-
Multistage cryogenic treatment of materials: pr...
- Auteurs : ALAVA L. A.
- Date : 21/04/2008
- Langues : Anglais
- Source : Cryogenics 2008. Proceedings of the 10th IIR International Conference
- Formats : PDF
Voir la fiche
-
LA CRYOGENIE AU SERVICE DE LA SCIENCE ET DE L'I...
- Auteurs : OLLIER C.
- Date : 1990
- Langues : Français
- Source : Rev. gén. Froid - vol. 80 - n. 3
Voir la fiche
-
POINT-CONTACT ELECTRON TUNNELLING SPECTROMETER.
- Auteurs : LEO V.
- Date : 1982
- Langues : Anglais
- Source : Rev. sci. Instrum. - vol. 53 - n. 7
Voir la fiche