Document IIF

Solution semi-analytique pour le problème de Stefan monophasique soumis à des conditions limites variables dans le temps en coordonnées sphériques. 

Semi-analytical solution for the one-phase Stefan problem subjected to time-varying boundary conditions in spherical coordinates.

Numéro : 0022

Auteurs : MOHIT M., XU M., SASMITO A. P.

Résumé

The Stefan problem has been traditionally used to represent a general form of phase change problems. Existing analytical solutions are not valid when the Stefan problem is subjected to a time-varying convective boundary condition. Currently, numerical approaches should be employed in this case which are computationally expensive. In the present study, a semi-analytical fast-to-compute approach is proposed to solve the one-phase Stefan problem with time-varying convective boundary condition in the spherical coordinate using a novel heat resistance model coupled with the analytical perturbation series solution. The effectiveness of the proposed method is shown by conducting simulation studies for different physical conditions including the geometrical and thermal properties of the system. Also, the superiority of the developed semi-analytical approach over the numerical enthalpy method in terms of computational load is illustrated through comparing the run-times. The droplet solidification problem is selected to illustrate the application of the developed approach.

Documents disponibles

Format PDF

Pages : 8 p.

Disponible

  • Prix public

    20 €

  • Prix membre*

    Gratuit

* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)

Détails

  • Titre original : Semi-analytical solution for the one-phase Stefan problem subjected to time-varying boundary conditions in spherical coordinates.
  • Identifiant de la fiche : 30032375
  • Langues : Anglais
  • Sujet : Technologie
  • Source : 14th IIR Conference on Phase-Change Materials and Slurries for Refrigeration and Air Conditioning. Proceedings:  Paris France, May 29-31, 2024.
  • Date d'édition : 31/05/2024
  • DOI : http://dx.doi.org/10.18462/iir.pcm.2024.0022

Liens


Voir d'autres communications du même compte rendu (40)
Voir le compte rendu de la conférence