Techniques d'intelligence artificielle pour la conception de systèmes CVC à haute efficacité énergétique.
Artificial intelligence techniques for energy efficient H.V.A.C. system design.
Auteurs : DUTTA N. N., DAS T.
Résumé
Artificial Intelligence (Artificial Neural Networks, Machine Learning Algorithms, Genetic Algorithms, Fuzzy Systems, etc.) has been part of our lives for many years now, and have proved to be quite useful in areas such as robotics, pattern recognition, forecasting, medicine, power systems, manufacturing, optimisation and signal processing as they provide an alternate way to tackle complex and ill-defined problems. In this paper we discuss the application of Artificial Neural Networks (A.N.N.) for the improvement of indoor comfort with simultaneous energy conservation in buildings. Energy Conservation is one of the most sought out by scientists and engineers in any project. Heating, Ventilation and Air-Conditioning (H.V.A.C.) systems are one of the major sources of energy consumption in buildings and therefore, are ideal candidates for substantial reductions in energy demand. Significant advances have been made in the past decades on the application of Artificial Intelligence (A.I.) techniques for H.V.A.C. design, control, management, optimization, and fault detection and diagnosis. Here we use a multi-layered Neural Network model to estimate the heating and cooling loads of buildings for efficient H.V.A.C. system design. Errors reported in the model are well within the acceptable limits showing how A.I. may play an important role in conserving energy in buildings.
Documents disponibles
Format PDF
Pages : 6
Disponible
Prix public
20 €
Prix membre*
15 €
* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)
Détails
- Titre original : Artificial intelligence techniques for energy efficient H.V.A.C. system design.
- Identifiant de la fiche : 30024775
- Langues : Anglais
- Sujet : Technologie
- Source : Proceedings of the International Conference on Emerging Technologies for Sustainable and Intelligent HVAC&R Systems, Kolkata, July 27-28 2018.
- Date d'édition : 27/07/2018
Liens
Voir d'autres communications du même compte rendu (29)
Voir le compte rendu de la conférence
Indexation
-
Prediction of thermal comfort index predicted m...
- Auteurs : LIU S. B., CAO Q., FU M. X., WANG Y. Y.
- Date : 09/09/1997
- Langues : Anglais
- Source : International Symposium on Air Conditioning in High Rise Buildings - 1997
- Formats : PDF
Voir la fiche
-
ANN-based occupancy detection for energy effici...
- Auteurs : ADHIKARY P., BANDYOPADHYAY S., MAZUMDAR A.
- Date : 27/07/2018
- Langues : Anglais
- Source : Proceedings of the International Conference on Emerging Technologies for Sustainable and Intelligent HVAC&R Systems, Kolkata, July 27-28 2018.
- Formats : PDF
Voir la fiche
-
The simulation of chiller-running behaviour and...
- Auteurs : HUANG P. C., KU Y. L., YEN Y. L.
- Date : 20/05/2009
- Langues : Anglais
- Source : ACRA-2009. The proceedings of the 4th Asian conference on refrigeration and air conditioning: May 20-22, 2009, Taipei, R.O.C.
- Formats : PDF
Voir la fiche
-
Building efficiency: a cross-section of comfort...
- Auteurs : DOVJAK M., SHUKUYA M., KRAINER A.
- Date : 16/06/2013
- Langues : Anglais
- Source : Clima 2013. 11th REHVA World Congress and 8th International Conference on Indoor Air Quality, Ventilation and Energy Conservation in Buildings.
- Formats : PDF
Voir la fiche
-
Neural model for air exchange in habitable rooms.
- Auteurs : PIOTROWSKI J. Z.
- Date : 09/08/1999
- Langues : Anglais
Voir la fiche