Une approche par réseau neuronal pour développer des corrélations algébriques pour le transfert de chaleur et l'écoulement des fluides.
A neural-network approach to develop algebraic correlations for heat transfer and fluid flow.
Numéro : 2120
Auteurs : LIN L., GAO L., HWANG Y., KEDZIERSKI M.
Résumé
Many heat transfer and fluid flow problems are too complex to model using traditional regression methods. Machine learning (ML) offers a new way to develop predictive models with high accuracy. However, current ML models are often uninterpretable and used as “black boxes”. This paper presents an approach to develop explicit, algebraic correlations from neural networks. An interpretable neural network, namely DimNet, is designed. One can train DimNet with experimental or simulation data and then convert the trained network to an explicit, power-law-like piecewise function. Besides being interpretable, DimNet inherits advantages of neural networks in modeling complex nonlinear problems. The mechanism and effectiveness of DimNet and the correlation development approach is further demonstrated by two case studies: 1) correlating simulation data for the friction factor of flow in smooth pipes; 2) correlating experimental data for flow boiling heat transfer coefficient within microfin tubes. Both case studies show DimNet can produce simple, explicit, algebraic correlations that are both statistically and phenomenologically accurate. The presented approach can be potentially used to develop correlations for various thermal-hydraulic problems, such as the pressure drop and heat transfer of single- and multi-phase flow, heat exchangers, and other thermal-hydraulic equipment.
Documents disponibles
Format PDF
Pages : 10 p.
Disponible
Gratuit
Détails
- Titre original : A neural-network approach to develop algebraic correlations for heat transfer and fluid flow.
- Identifiant de la fiche : 30030473
- Langues : Anglais
- Sujet : Technologie
- Source : 2022 Purdue Conferences. 19th International Refrigeration and Air-Conditioning Conference at Purdue.
- Date d'édition : 10/07/2022
Liens
Voir d'autres communications du même compte rendu (224)
Voir le compte rendu de la conférence
Indexation
-
Machine learning based prediction of airflow ma...
- Auteurs : O'MALLEY B., TANCABEL J., AUTE V.
- Date : 17/07/2024
- Langues : Anglais
- Source : 2024 Purdue Conferences. 20th International Refrigeration and Air-Conditioning Conference at Purdue.
- Formats : PDF
Voir la fiche
-
Data-driven modeling of microchannel heat excha...
- Auteurs : ZOU J., CHEN Y., ZHENG C., HUANG L.
- Date : 17/07/2024
- Langues : Anglais
- Source : 2024 Purdue Conferences. 20th International Refrigeration and Air-Conditioning Conference at Purdue.
- Formats : PDF
Voir la fiche
-
Sustainability with prospective refrigerants: a...
- Auteurs : ZILIO C.
- Date : 21/08/2023
- Langues : Anglais
- Source : Proceedings of the 26th IIR International Congress of Refrigeration: Paris , France, August 21-25, 2023.
- Formats : PDF
Voir la fiche
-
Informed machine learning to develop a reduced ...
- Auteurs : YOUSAF S., BRADSHAW C. R., KAMALAPURKAR R., SAN O.
- Date : 2022
- Langues : Anglais
- Source : 2022 Purdue Conferences. 19th International Refrigeration and Air-Conditioning Conference at Purdue.
- Formats : PDF
Voir la fiche
-
Parallel deep neural network for scalable coupl...
- Auteurs : CHEN S., LIU Z., CHEN K., ZHU X., JIN X., DU Z.
- Date : 21/08/2023
- Langues : Anglais
- Source : Proceedings of the 26th IIR International Congress of Refrigeration: Paris , France, August 21-25, 2023.
- Formats : PDF
Voir la fiche