Apprentissage automatique informé pour développer un modèle d'ordre réduit d'équipement unitaire.
Informed machine learning to develop a reduced order model of unitary equipment.
Numéro : 2386
Auteurs : YOUSAF S., BRADSHAW C. R., KAMALAPURKAR R., SAN O.
Résumé
Combining machine learning tools with conventional reduced order modeling approaches produces the potential for an enormous increase in the ability to select suitable models. This paper presents a machine learning based approach for predicting the cooling capacity of a fixed speed unitary air-conditioner. Experimental data from a 10-ton Roof Top Unit (RTU) is simplified by utilizing a feature selection methodology, Elastic Net (EN), to accurately record and reduce the parameters while simultaneously preserving the physics of the system. The simplified RTU data set resulting from the EN is fed into a novel method for model order reduction employing Principal Component Analysis coupled with a supervised Artificial Neural Network (ANN). Preliminary results show that proposed technique is able to predict the equipment cooling capacity within ±2% of experimental results. Furthermore, the current work has also been compared to the recent models in the literature and has been found to be superior.
Documents disponibles
Format PDF
Pages : 11 p.
Disponible
Gratuit
Détails
- Titre original : Informed machine learning to develop a reduced order model of unitary equipment.
- Identifiant de la fiche : 30030706
- Langues : Anglais
- Sujet : Technologie
- Source : 2022 Purdue Conferences. 19th International Refrigeration and Air-Conditioning Conference at Purdue.
- Date d'édition : 2022
Liens
Voir d'autres communications du même compte rendu (224)
Voir le compte rendu de la conférence
-
On Hourly Forecasting Heating Energy Consumptio...
- Auteurs : METSÄ-EEROLA I., PULKKINEN J., NIEMITALO O., KOSKELA O.
- Date : 07/2022
- Langues : Anglais
- Source : Energies - vol. 15 - n. 14
- Formats : PDF
Voir la fiche
-
Model-free HVAC control in buildings: a review.
- Auteurs : MICHAILIDIS P., MICHAILIDIS I., VAMVAKAS D., KOSMATOPOULOS E.
- Date : 10/2023
- Langues : Anglais
- Source : Energies - vol. 16 - n. 20
- Formats : PDF
Voir la fiche
-
Artificial intelligence strategies applied in g...
- Auteurs : DE PAOLI MENDES R., GARCIA PABON J. J., FERREIRA POTTIE D. L., MACHADO L.
- Date : 08/2024
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 164
- Formats : PDF
Voir la fiche
-
Machine-learning-based compressor models: A cas...
- Auteurs : WAN H., CAO T., HWANG Y., CHANG S. D., YOON Y. J.
- Date : 03/2021
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 123
- Formats : PDF
Voir la fiche
-
Energy saving pre-cooling pattern search of an ...
- Auteurs : YOON M. S., YOON W. S.
- Date : 31/08/2021
- Langues : Anglais
- Source : 13th IEA Heat Pump Conference 2021: Heat Pumps – Mission for the Green World. Conference proceedings [full papers]
- Formats : PDF
Voir la fiche