Document IIF
Comparaison entre la modélisation d’un compresseur à pistons grâce à un réseau neuronal [artificiel] et un modèle physique.
A comparison between the modeling of a reciprocating compressor using artificial neural network and physical model.
Auteurs : BELMAN-FLORES J. M., LEDESMA S., BARROSO-MALDONADO J. M., et al.
Type d'article : Article, Article de la RIF
Résumé
This article presents the development, validation, and comparison of two methods for modeling a reciprocating compressor. Initially, the physical mode is based on eight internal sub-processes that incorporate infinitesimal displacements according to the piston movement. Next, the analysis and modeling of the compressor through the application of artificial neural networks are presented. The input variables are: suction pressure, suction temperature, discharge pressure, and compressor rotation speed. The output parameters are: refrigerant mass flow rate, discharge temperature, and energy consumption. Both models are validated with experimental data for the refrigerants R1234yf and R134a; computer simulations show that mean relative errors are below ±10% with the physical model, and below ±1% when artificial neural networks are used. Additionally, the performance of the models is evaluated through the computation of the squared absolute error. Finally, these models are used to compute an energy comparison between both refrigerants.
Documents disponibles
Format PDF
Pages : 144-156
Disponible
Prix public
20 €
Prix membre*
Gratuit
* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)
Détails
- Titre original : A comparison between the modeling of a reciprocating compressor using artificial neural network and physical model.
- Identifiant de la fiche : 30016287
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 59
- Date d'édition : 11/2015
Liens
Voir d'autres articles du même numéro (27)
Voir la source
Indexation
-
Thèmes :
Compresseurs;
HFC - Mots-clés : R134a; R1234yf; Énergie; Comparaison; Réseau neuronal artificiel; Modélisation; Compresseur à piston
-
Analysis and modeling of a variable speed recip...
- Auteurs : LEDESMA S., BELMAN-FLORES J. M., BARROSO-MALDONADO J. M.
- Date : 11/2015
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 59
- Formats : PDF
Voir la fiche
-
Application of artificial neural networks for g...
- Auteurs : LEDESMA S., BELMAN-FLORES J. M.
- Date : 08/2014
- Langues : Anglais
- Source : Applied Thermal Engineering - vol. 69 - n. 1-2
Voir la fiche
-
Compressor performance comparison when using R1...
- Auteurs : OOI K. T.
- Date : 16/07/2012
- Langues : Anglais
- Source : 2012 Purdue Conferences. 21st International Compressor Engineering Conference at Purdue.
- Formats : PDF
Voir la fiche
-
Evaluation and quantification of compressor mod...
- Auteurs : GABEL K. S., BRADSHAW C. R.
- Date : 05/2023
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 149
- Formats : PDF
Voir la fiche
-
Electronic expansion valve mass flow rate predi...
- Auteurs : TIAN Z., GU B., QIAN C., et al.
- Date : 09/2015
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 57
- Formats : PDF
Voir la fiche