Document IIF

Corrélation fondée sur un modèle, entre un réseau neuronal et le débit massique du frigorigène à l'intérieur de tubes capillaires adiabatiques.

Model-based neural network correlation for refrigerant mass flow rates through adiabatic capillary tubes.

Auteurs : ZHANG C. L., ZHAO L. X.

Type d'article : Article, Article de la RIF

Résumé

A capillary tube is a common expansion device widely used in small-scale refrigeration and air-conditioning systems. A generalized correlation of refrigerant mass flow rate through adiabatic capillary tubes covering both subcooled and two-phase inlet conditions is expected for multiple purposes. Based on the homogeneous equilibrium flow model, a new group of dimensionless parameters has been proposed. To express the nonlinear relationship between the mass flow rate and the associated parameters, the multi-layer perceptron neural network is employed as a universal function approximator. Simulated data from a validated homogeneous equilibrium model are used for the neural network training and testing. A 5-6-1 network trained with the simulated data of R-600a and R-407C shows good generality in predicting the simulated data of R-12, R-22, R-134a, R-290, R-410A, and R-404A. Also, the deviations between the trained neural network and the experimental data from the open literature fall into plus or minus 10%.

Documents disponibles

Format PDF

Pages : 690-698

Disponible

  • Prix public

    20 €

  • Prix membre*

    Gratuit

* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)

Détails

  • Titre original : Model-based neural network correlation for refrigerant mass flow rates through adiabatic capillary tubes.
  • Identifiant de la fiche : 2007-1082
  • Langues : Anglais
  • Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 30 - n. 4
  • Date d'édition : 06/2007

Liens


Voir d'autres articles du même numéro (15)
Voir la source