Document IIF

Développement d’une structure de modélisation d’un détendeur électronique en utilisant un réseau de neurones artificiel: étude de cas sur des systèmes à débit de frigorigène variable.

An electronic expansion valve modeling framework development using artificial neural network: A case study on VRF systems.

Auteurs : WAN H., CAO T., HWANG Y., et al.

Type d'article : Article, Article de la RIF

Résumé

Electronic expansion valves (EEV) are widely used in variable refrigerant flow systems (VRF) to control the mass flow rate of each indoor unit. EEV model is used to predict the mass flow rate through an EEV. While the power-law correlation method has been used to build the EEV model so far, Artificial Neural Network (ANN) methods have been adapted to model the EEV with a fixed speed compressor thanks to its higher accuracy. However, the EEV is typically working with the variable speed compressor in a VRF system. In addition, the parameters used in ANN modeling could be further optimized. The objective of this study is to develop an EEV modeling framework and optimize the input parameter number and hidden neuron number. We presented the framework through an EEV model development for a VRF system. For these, we used the field test data, applied a principal components analysis approach in optimizing the ANN input parameter number, and investigated the proper number of hidden neurons and appropriate transfer function pairs. We found the performance of the ANN model would not improve much as the number of input parameters and the number of hidden neurons reached a threshold. Only three transfer function pairs are suitable for this case in total nine groups we studied. Our ANN model has the average absolute deviation of 2.2%. The framework can be easily applied to EEV modeling in other VRF and air condition systems with necessary data support.

Documents disponibles

Format PDF

Pages : 114-127

Disponible

  • Prix public

    20 €

  • Prix membre*

    Gratuit

* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)

Détails

  • Titre original : An electronic expansion valve modeling framework development using artificial neural network: A case study on VRF systems.
  • Identifiant de la fiche : 30026969
  • Langues : Anglais
  • Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 107
  • Date d'édition : 11/2019
  • DOI : http://dx.doi.org/10.1016/j.ijrefrig.2019.08.018

Liens


Voir d'autres articles du même numéro (32)
Voir la source