Document IIF

Corrélation du flux massique de frigorigène à travers des capillaires, à l'aide d'un réseau neuronal artificiel.

Generalized correlation of refrigerant mass flow rate through adiabatic capillary tubes using artificial neural network.

Auteurs : KIM H. J.

Type d'article : Article, Article de la RIF

Résumé

A capillary tube is a common expansion device widely used in small-scale refrigeration and air-conditioning systems. A generalized correlation method for refrigerant flow rate through adiabatic capillary tubes is developed by combining dimensional analysis and artificial neural network (ANN). Dimensional analysis was utilized to provide the generalized dimensionless parameters and reduce the number of input parameters, while a three-layer feedforward ANN is served as a universal approximator of the nonlinear multi-input and single-output function. For ANN training and test, measured data for R12, R134a, R22, R290, R407C, R410A, and R600a in the open literature are employed. The trained ANN with just one hidden neuron is good enough for the training data with average and standard deviations of 0.4 and 6.6%, respectively. By comparison, for two test data sets, the trained ANN gives two different results. It is well interpreted by evaluating the outlier with a homogeneous equilibrium model.

Documents disponibles

Format PDF

Pages : 506-514

Disponible

  • Prix public

    20 €

  • Prix membre*

    Gratuit

* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)

Détails

  • Titre original : Generalized correlation of refrigerant mass flow rate through adiabatic capillary tubes using artificial neural network.
  • Identifiant de la fiche : 2005-1690
  • Langues : Anglais
  • Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 28 - n. 4
  • Date d'édition : 06/2005

Liens


Voir d'autres articles du même numéro (16)
Voir la source