Résumé
Aiming at finding an efficient way for the fault detection and diagnosis (FDD) of refrigeration system, the probabilistic neural network (PNN) is proposed to diagnose 7 types of typical faults for a refrigeration system. The establishment of the FDD model based on PNN and the processes of finding out the best spread value was elaborated in detail. The influence of sample size on the best spread value and the correct rate (CR) were explored. It was also demonstrated that the system-level faults were more difficult to be recognized by the model than the component-level faults. The comparison also has been done between the performance of the PNN and the prevailing back-propagation (BP) network. The results show that the overall diagnosis performance of the PNN is better than that of the BP network and the diagnosis of single training of the PNN is more reliable.
Documents disponibles
Format PDF
Pages : 8 p.
Disponible
Prix public
20 €
Prix membre*
Gratuit
* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)
Détails
- Titre original : Fault detection and diagnosis of a refrigeration system using probabilistic neural network.
- Identifiant de la fiche : 30015483
- Langues : Anglais
- Source : Proceedings of the 24th IIR International Congress of Refrigeration: Yokohama, Japan, August 16-22, 2015.
- Date d'édition : 16/08/2015
- DOI : http://dx.doi.org/10.18462/iir.icr.2015.0759
Liens
Voir d'autres communications du même compte rendu (657)
Voir le compte rendu de la conférence
Indexation
-
Identification of vapour compression air condit...
- Auteurs : SHOLAHUDIN S., OHNO K., YAMAGUCHI S., et al.
- Date : 24/08/2019
- Langues : Anglais
- Source : Proceedings of the 25th IIR International Congress of Refrigeration: Montréal , Canada, August 24-30, 2019.
- Formats : PDF
Voir la fiche
-
A control-oriented hybrid model for a direct ex...
- Auteurs : WANG X., XU X.
- Date : 16/08/2015
- Langues : Anglais
- Source : Proceedings of the 24th IIR International Congress of Refrigeration: Yokohama, Japan, August 16-22, 2015.
- Formats : PDF
Voir la fiche
-
Performance prediction of adiabatic capillary t...
- Auteurs : KALEEM KHAN M., KUMAR R., SAHOO P. K.
- Date : 25/01/2009
- Langues : Anglais
- Source : ASHRAE Transactions. Papers presented at the 2009 ASHRAE Winter Conference: Chicago, Illinois, January 2009. Volume 115, part 1.
Voir la fiche
-
Application of artificial intelligence to refri...
- Auteurs : CERDÁN CARTAGENA, PÉREZ GOMARIZ, LÓPEZ GÓMEZ A.
- Date : 04/2022
- Langues : Anglais
- Source : XI Congreso Ibérico y IX Congreso Iberoamericano de Ciencias y Técnicas del Frío, CYTEF 2022.
- Formats : PDF
Voir la fiche
-
Development of dynamic modeling framework using...
- Auteurs : WAN H., CAO T., HWANG Y., CHIN S.
- Date : 05/2021
- Langues : Anglais
- Source : 2021 Purdue Conferences. 18th International Refrigeration and Air-Conditioning Conference at Purdue.
- Formats : PDF
Voir la fiche