Résumé
In addition to indoor air temperature, indoor air humidity is also an important parameter for building up a thermally appropriate artificial indoor environment. However, introducing air humidity as a controlled parameter in addition to air temperature would significantly increase the difficulty to develop a control-oriented model for building air conditioning systems. This is particular true for direct expansion (DX) air conditioning (A/C) systems, whose operational parameters are highly coupled and behave non-linearly and influenced by the controlled parameters, i.e., air temperature and humidity. Neither physical modelling approach nor artificial neural network (ANN) modelling approach could solely satisfy the requirement, in terms of accuracy and sensitivity, for simultaneous control of air temperature and humidity using a DX A/C system, without any inadequacies. In this paper, a hybrid modelling approach is proposed, which uses the physical modelling approach to simulate the performance of evaporator for accurately catching the cooling and dehumidification processes under various working conditions and uses ANN to simulate all other components of a DX A/C system for reduced calculation efforts. By such a hybrid modelling approach, the advantage of simplicity of an ANN-based sub-model could be utilized and the disadvantage of it that do not allow to accurately extrapolate beyond the range of the data used for training/estimating the model parameters could be avoided.
Documents disponibles
Format PDF
Pages : 9 p.
Disponible
Prix public
20 €
Prix membre*
Gratuit
* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)
Détails
- Titre original : A control-oriented hybrid model for a direct expansion air conditioning system.
- Identifiant de la fiche : 30015919
- Langues : Anglais
- Source : Proceedings of the 24th IIR International Congress of Refrigeration: Yokohama, Japan, August 16-22, 2015.
- Date d'édition : 16/08/2015
- DOI : http://dx.doi.org/10.18462/iir.icr.2015.0235
Liens
Voir d'autres communications du même compte rendu (657)
Voir le compte rendu de la conférence
-
Real-time neural inverse optimal control for in...
- Auteurs : MUNOZ F., SANCHEZ E. N., XIA Y., et al.
- Date : 07/2017
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 79
- Formats : PDF
Voir la fiche
-
Development of dynamic modeling framework using...
- Auteurs : WAN H., CAO T., HWANG Y., CHIN S.
- Date : 05/2021
- Langues : Anglais
- Source : 2021 Purdue Conferences. 18th International Refrigeration and Air-Conditioning Conference at Purdue.
- Formats : PDF
Voir la fiche
-
Identification of vapour compression air condit...
- Auteurs : SHOLAHUDIN S., OHNO K., YAMAGUCHI S., et al.
- Date : 24/08/2019
- Langues : Anglais
- Source : Proceedings of the 25th IIR International Congress of Refrigeration: Montréal , Canada, August 24-30, 2019.
- Formats : PDF
Voir la fiche
-
An electronic expansion valve modeling framewor...
- Auteurs : WAN H., CAO T., HWANG Y., et al.
- Date : 11/2019
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 107
- Formats : PDF
Voir la fiche
-
Model-based neural network correlation for refr...
- Auteurs : ZHANG C. L., ZHAO L. X.
- Date : 06/2007
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 30 - n. 4
- Formats : PDF
Voir la fiche