• Accueil
  • Publications

  • Identification of vapour compression air condit...

Document IIF

Identification of vapour compression air conditioning system behaviour using Bayesian regularization neural network.

Identification du comportement d’un système de conditionnement d’air à compression de vapeur à l'aide du réseau de neurones et de la régularisation bayésienne.

Numéro : pap. n. 1244

Auteurs : SHOLAHUDIN S., OHNO K., YAMAGUCHI S., et al.

Résumé

Identification for system dynamic behaviour is necessary to develop control strategy. In this paper, the dynamic performance of air conditioning (AC) system is predicted using artificial neural network (ANN) approach. The ANN is developed to predict exergy efficiency, coefficient of performance (COP), and cooling capacity. The controllable parameters including compressor speed and evaporator and condenser fan speed are considered as the input. The datasets for prediction are generated by AC system simulator. The system was simulated by randomly varying compressor speed and evaporator and condenser fan speed with N-sample signal input. The dynamic ANN configuration with Bayesian regularization is proposed to predict one-step ahead of system performance behaviour. The results show that the developed ANN in present study yields good prediction accuracy for all outputs. Accordingly, ANN can be further applied for predictive control application in AC system to control cooling capacity while maintaining system efficiency.

Documents disponibles

Format PDF

Pages : 8

Disponible

  • Prix public

    20 €

  • Prix membre*

    Gratuit

* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)

Détails

  • Titre original : Identification of vapour compression air conditioning system behaviour using Bayesian regularization neural network.
  • Identifiant de la fiche : 30026786
  • Langues : Anglais
  • Source : Proceedings of the 25th IIR International Congress of Refrigeration: Montréal , Canada, August 24-30, 2019.
  • Date d'édition : 24/08/2019
  • DOI : http://dx.doi.org/10.18462/iir.icr.2019.1244

Liens


Voir d'autres communications du même compte rendu (632)
Voir le compte rendu de la conférence