Recommandé par l'IIF
Modèles d'intelligence artificielle pour les systèmes de froid, de conditionnement d'air et de pompes à chaleur. ,
Artificial intelligence models for refrigeration, air conditioning and heat pump systems.
Auteurs : ADELEKAN D. S., OHUNAKIN O. S., PAUL B. S.
Type d'article : Article de périodique, Synthèse
Résumé
Artificial intelligence (AI) models for refrigeration, heat pumps, and air conditioners have emerged in recent decades. The universal approximation accuracy and prediction performances of various AI structures like feedforward neural networks, radial basis function neural networks, adaptive neuro-fuzzy inference and recurrent neural networks are encouraging interest. This review discusses existing topographies of neural network models for RHVAC system modelling, energy prediction and fault(s), and detection and diagnosis. Studies show that AI structures require standardization and improvement for tuning hyperparameters (like weight, bias, activation functions, number of hidden layers and neurons). The selection of activation functions, validation, and learning algorithms depends on author’s suitability for a particular application. Backpropagation, error trial selection of the number of hidden layer, and hidden layers’ neurons, and Levenberg–Marquardt learning algorithms, remain prevalent methodologies for developing AI structures. The major limitations to the application of AI models in RHVAC systems include exploding or/and vanishing gradients, interpretability, and accuracy trade off, and training saturation and limited sensitivity. This review aims to give up-to-date applications of different AI architectures in RHVAC systems and to identify the associated limitations and prospects.
Documents disponibles
Format PDF
Disponible
Gratuit
Détails
- Titre original : Artificial intelligence models for refrigeration, air conditioning and heat pump systems.
- Identifiant de la fiche : 30030446
- Langues : Anglais
- Sujet : Technologie
- Source : Energy Reports - vol. 8
- Date d'édition : 11/2022
- DOI : http://dx.doi.org/10.1016/j.egyr.2022.06.062
Liens
Voir d'autres articles du même numéro (4)
Voir la source
-
Accurate classification of frost thickness usin...
- Auteurs : ANDRADE-AMBRIZ Y. A., LEDESMA S., ALMANZA-OJEDA D. L., BELMAN-FLORES J. M.
- Date : 01/2023
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 145
- Formats : PDF
Voir la fiche
-
A review on applications of fuzzy logic control...
- Auteurs : BELMAN-FLORES J. M., RODRIGUEZ-VALDERRAMA D. A., LEDESMA S., GARCIA-PABON J. J., HERNÁNDEZ D., PARDO-CELY D. M.
- Date : 02/2022
- Langues : Anglais
- Source : Applied Sciences - vol. 12 - n. 3
- Formats : PDF
Voir la fiche
-
Integrated control of the cooling system and su...
- Auteurs : MOON J. W.
- Date : 03/2015
- Langues : Anglais
- Source : Applied Thermal Engineering - vol. 78
Voir la fiche
-
Artificial neural networks for fast rooftop uni...
- Auteurs : HJORTLAND A. L., BRAUN J. E.
- Date : 09/07/2018
- Langues : Anglais
- Source : 2018 Purdue Conferences. 17th International Refrigeration and Air-Conditioning Conference at Purdue.
- Formats : PDF
Voir la fiche
-
Optimisation of the design parameters of a dome...
- Auteurs : AVCI H., KUMLUTAS D., ÖZER O., et al.
- Date : 07/2016
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 67
- Formats : PDF
Voir la fiche