
Document IIF
Prédiction à l’aide d’une modélisation RNA des performances énergétiques d’une pompe à chaleur pour automobile utilisant un compresseur à puissance fixe et du R1234fy.
Predicting the energetic performance of an automobile heat pump utilising a fixed capacity compressor and R1234yf using ANN modelling.
Résumé
This study used experimental data to illustrate the accuracy of artificial neural network modelling for vehicle heat pump systems. The system had a four-way valve, thermostatic expansion valves, and a fixed-capacity compressor. The system used R1234yf refrigerant instead of R134a in automotive air conditioning systems. The system was evaluated using varying compressor speeds, indoor unit intake air flow rates, interior and outdoor unit inlet air flow temperatures, and relative humidity. The experimental system was tested 72 times using different control and data-collecting technologies to determine steady-state performance and how artificial intelligence may enhance it. The projected performance parameter of the automotive heat pump system employing R1234yf refrigerant was assessed using an artificial neural network model. Six scenarios were examined: compressor discharge temperature, indoor unit output airflow temperature, refrigerant mass flow rate, compressor power, heating capacity, and performance coefficient. Data was divided into training (269 patterns, 68.27 %) and testing sets (125 patterns, 31.73 %) to ensure accurate model development and performance assessment across different experimental configurations. This approach guarantees robust data handling and reliable artificial neural network predictions. The training and testing of the artificial neural network model of the automobile heat pump system with R1234yf was evaluated. In the best case, training R² was 0.99817, MSE 0.0012, and MEP 0.005. High prediction accuracy and robust linear associations were observed with R² = 0.99969, MSE = 0.0008, and MEP = 0.003. Future vehicle heat pump research using alternative refrigerants will benefit from this study's shortened experimental techniques and system performance estimates.
Documents disponibles
Format PDF
Pages : 363-384
Disponible
Prix public
20 €
Prix membre*
Gratuit
* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)
Détails
- Titre original : Predicting the energetic performance of an automobile heat pump utilising a fixed capacity compressor and R1234yf using ANN modelling.
- Identifiant de la fiche : 30033485
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 170
- Date d'édition : 02/2025
- DOI : http://dx.doi.org/10.1016/j.ijrefrig.2024.10.010
Liens
Voir d'autres articles du même numéro (37)
Voir la source
Indexation
-
Dynamic viscosity of low GWP refrigerants in th...
- Auteurs : TOMASSETTI S., MUCIACCIA P. F., PIERANTOZZI M., DI NICOLA G.
- Date : 08/2024
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 164
- Formats : PDF
Voir la fiche
-
Data-driven modeling of high-speed centrifugal ...
- Auteurs : GIUFFRE A., ASCIONE F., DE SERVI C., PINI M.
- Date : 07/2023
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 151
- Formats : PDF
Voir la fiche
-
A new method to predict the thermal sensation o...
- Auteurs : UEDA M., TANIGUCHI Y., AOKI H.
- Date : 02/1997
- Langues : Anglais
- Source : JSME int. J., B - vol. 40 - n. 1
Voir la fiche
-
Modelling of rotary vane compressor applying ar...
- Auteurs : SANAYE S., DEHGHANDOKHT M., MOHAMMADBEIGI H., et al.
- Date : 05/2011
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 34 - n. 3
- Formats : PDF
Voir la fiche
-
Régulation prévisionnelle basée sur des réseaux...
- Auteurs : ZHOU E., MEI N., DONG H., et al.
- Date : 05/2007
- Langues : Chinois
- Source : HV & AC - vol. 37 - n. 198
- Formats : PDF
Voir la fiche