Document IIF

Modèles prédictifs robustes pour estimer le dépôt de givre sur des surfaces parallèle et horizontale.

Robust predictive models for estimating frost deposition on horizontal and parallel surfaces.

Auteurs : ZENDEHBOUDI A., LI X.

Type d'article : Article, Article de la RIF

Résumé

The phenomenon of frost is affected by different parameters, and considerable complexity is involved in the process. A Multilayer Perceptron-Artificial Neural Network (MLP-ANN) is developed to eliminate the limitations by estimating the frost density and layer thickness over wide ranges in both horizontal and parallel plate configurations. A comparative study between the developed MLP-ANNs, the other most popular intelligent methods, and the well-known empirical and theoretical models highlights the overall better performance of the MLP-ANN models presented in the current study. The R2 for the MLP-ANN models were 0.9994, 0.9997, 0.9953, and 0.9965 for the frost thickness and density on horizontal and parallel surfaces, respectively. Additionally, the quality of the collected data samples and the applicability domain of the MLP-ANNs are assessed using the Leverage algorithm. The results demonstrate the predictability of the suggested scheme for precisely calculating frost deposition over wide ranges on both plate configurations under different conditions.

Documents disponibles

Format PDF

Pages : 225-237

Disponible

  • Prix public

    20 €

  • Prix membre*

    Gratuit

* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)

Détails

  • Titre original : Robust predictive models for estimating frost deposition on horizontal and parallel surfaces.
  • Identifiant de la fiche : 30022003
  • Langues : Anglais
  • Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 80
  • Date d'édition : 08/2017
  • DOI : http://dx.doi.org/10.1016/j.ijrefrig.2017.05.013

Liens


Voir d'autres articles du même numéro (21)
Voir la source