Document IIF
Modélisation d'un compresseur rotatif à l'aide d'un réseau neuronal.
Modelling of rotary vane compressor applying artificial neural network.
Auteurs : SANAYE S., DEHGHANDOKHT M., MOHAMMADBEIGI H., et al.
Type d'article : Article, Article de la RIF
Résumé
The thermal modelling of rotary vane compressor (RVC) was performed in this paper by applying artificial neural network (ANN) method. In the first step, appropriate tests were designed and experimental data were collected during steady state operating condition of RVC in the experimental setup. Then parameters including refrigerant suction temperature and pressure, compressor rotating speed as well as refrigerant discharge pressure were adjusted. With these input values, the operating output parameters such as refrigerant mass flow rate and refrigerant discharge temperature were measured. In the second step, the experimental results were used to train ANN model for predicting RVC operating parameters such as refrigerant mass flow rate and compressor power consumption. These predicted operating parameters by ANN model agreed well with the experimental values with correlation coefficient in the range of 0.962-0.998, mean relative errors in the range of 2.79-7.36% as well as root mean square error (RMSE) 10.59 kg/h and 12 K for refrigerant mass flow rate and refrigerant discharge temperature, respectively. Results showed closer predictions with experimental results for ANN model in comparison with nolinear regression model.
Documents disponibles
Format PDF
Pages : pp. 764-772
Disponible
Prix public
20 €
Prix membre*
Gratuit
* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)
Détails
- Titre original : Modelling of rotary vane compressor applying artificial neural network.
- Identifiant de la fiche : 2011-0109
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 34 - n. 3
- Date d'édition : 05/2011
Liens
Voir d'autres articles du même numéro (20)
Voir la source
Indexation
-
A new method to predict the thermal sensation o...
- Auteurs : UEDA M., TANIGUCHI Y., AOKI H.
- Date : 02/1997
- Langues : Anglais
- Source : JSME int. J., B - vol. 40 - n. 1
Voir la fiche
-
Theory and practice of neural networks applicat...
- Auteurs : NIKIFOROV A., REKOVETC A., GALERKIN Y., PETUKHOV E., REKSTIN A., SEMENOVSKY V., SOLOVYEVA O. A.
- Date : 09/2021
- Langues : Anglais
- Source : 12th International Conference on Compressors and their Systems
- Formats : PDF
Voir la fiche
-
Application of feedforward neural networks to s...
- Auteurs : JAIN A., FRAMKE N., TIWARI A., SPASOV M.
- Date : 10/07/2022
- Langues : Anglais
- Source : 2022 Purdue Conferences. 19th International Refrigeration and Air-Conditioning Conference at Purdue.
- Formats : PDF
Voir la fiche
-
Artificial intelligence strategies applied in g...
- Auteurs : DE PAOLI MENDES R., GARCIA PABON J. J., FERREIRA POTTIE D. L., MACHADO L.
- Date : 08/2024
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 164
- Formats : PDF
Voir la fiche
-
Modèle de vibration de l'arbre du rotor princip...
- Auteurs : LI C., WANG S.
- Date : 02/2013
- Langues : Chinois
- Source : Journal of Refrigeration - vol. 34 - n. 149
- Formats : PDF
Voir la fiche