Prédiction de la surchauffe et diagnostics des défaillances des systèmes CVC à partir d’un mesurage simple de la température par le biais d’une approche fondée sur le big data.
Superheat prediction & fault diagnostics of HVAC from simple temperature measurements using big data approach.
Numéro : 3683
Auteurs : TESFAY M. K., RAFAIE M., SINKAR K., ARUNASALAM P., BESARLA D., ALSALEEM F.
Résumé
New advancements in data & algorithms have pushed new techniques and methods to the forefront in optimizing energy efficiency as well as keeping the thermal comfort of residents in intelligent buildings research. HVAC elements, being ubiquitous and fundamental elements in buildings today, their diagnostics maintenance, operational functionalities, and control are essential aspects in this regard. The tremendous amount of data generated from buildings every day and recent developments with data science tools have changed the control and monitoring of these units from exhausting physical modeling and operation to data-driven techniques that are more reliable and efficient. The massive streaming data generated by smart building sensors have inspired new ways of controlling and diagnosing faults in comfort systems using machine learning and big data analytics. In this work, we present a big-data driven approach to model the dynamic of two similar HVAC (but, healthy and faulty) systems from simple temperature measurements collected over an extended period. The model showed good accuracy in predicting the system superheat for both systems. This demonstrates the potential of big data approach to substitute the need for having the expensive pressure sensor to measure superheat.
Documents disponibles
Format PDF
Pages : 10
Disponible
Prix public
20 €
Prix membre*
15 €
* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)
Détails
- Titre original : Superheat prediction & fault diagnostics of HVAC from simple temperature measurements using big data approach.
- Identifiant de la fiche : 30028670
- Langues : Anglais
- Sujet : Technologie
- Source : 2021 Purdue Conferences. 6th International High Performance Buildings Conference at Purdue.
- Date d'édition : 24/05/2021
- Document disponible en consultation à la bibliothèque du siège de l'IIF uniquement.
Liens
Voir d'autres communications du même compte rendu (52)
Voir le compte rendu de la conférence
Indexation
-
Airflow based model to estimate commercial buil...
- Auteurs : GUNNSTEINSSON S., KAHN R., GEVELBER M.
- Date : 11/07/2016
- Langues : Anglais
- Source : 2016 Purdue Conferences. 4th International High Performance Buildings Conference at Purdue.
- Formats : PDF
Voir la fiche
-
HVAC system simulation: overview: issues and so...
- Auteurs : TRCKA M., HENSEN J. L. M.
- Date : 21/08/2011
- Langues : Anglais
- Source : Proceedings of the 23rd IIR International Congress of Refrigeration: Prague, Czech Republic, August 21-26, 2011. Overarching theme: Refrigeration for Sustainable Development.
- Formats : PDF
Voir la fiche
-
Investigation of VRF System under Cooling Mode ...
- Auteurs : WAN H., CAO T., HWANG Y., BAE H., OH S.
- Date : 31/08/2021
- Langues : Anglais
- Source : 13th IEA Heat Pump Conference 2021: Heat Pumps – Mission for the Green World. Conference proceedings [full papers]
- Formats : PDF
Voir la fiche
-
USING THE OFFICE BUILDING AND MULTIFAMILY DATA ...
- Auteurs : CRAWLEY D. B., HUANG Y. J.
- Date : 1989
- Langues : Anglais
Voir la fiche
-
Energy-saving effect of grading treatment for f...
- Auteurs : WANG W., LIANG C., LI X.
- Date : 21/08/2023
- Langues : Anglais
- Source : Proceedings of the 26th IIR International Congress of Refrigeration: Paris , France, August 21-25, 2023.
- Formats : PDF
Voir la fiche