Document IIF
R152a : viscosité, multicouches et réseaux neuronaux.
The viscosity surfaces of R152a in the form of multilayer feed forward neural networks.
Auteurs : SCALABRIN G., CRISTOFOLI G.
Type d'article : Article, Article de la RIF
Résumé
A multilayer feedforward neural network (MLFN) technique is adopted for developing a viscosity equation for R152a. The results obtained are very promising, with an average absolute deviation (AAD) of 0.36% for the currently available 300 primary data points, and they are a significant improvement over those of a corresponding conventional equation in the literature. The method requires a high accuracy equation of state for the fluid in order to convert the experimental into the independent variables, but such equation may not be available for the target fluid. Aiming at overcoming this difficulty, two viscosity explicit equations in the form, avoiding the density variable, are also developed, one for the liquid surface and the other for the vapor one. The reached accuracy levels are equivalent to that of the former equation. The trend of the reduced second viscosity virial coefficient is correctly reproduced in the data range. The proposed technique, being heuristic and non theoretically founded, is also a powerful tool for experimental data screening.
Documents disponibles
Format PDF
Pages : 302-314
Disponible
Prix public
20 €
Prix membre*
Gratuit
* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)
Détails
- Titre original : The viscosity surfaces of R152a in the form of multilayer feed forward neural networks.
- Identifiant de la fiche : 2003-1676
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 26 - n. 3
- Date d'édition : 05/2003
Liens
Voir d'autres articles du même numéro (10)
Voir la source
Indexation
- Thèmes : HFC
- Mots-clés : Viscosité; Calcul; Réseau neuronal artificiel; R152a; Frigorigène
-
Viscosity prediction for six pure refrigerants ...
- Auteurs : ZHI L. H., HU P., CHEN L. X., et al.
- Date : 04/2018
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 88
- Formats : PDF
Voir la fiche
-
Modeling of refrigerant flow through adiabatic ...
- Auteurs : LI Z., SHAO L., YANG L., et al.
- Date : 16/08/2015
- Langues : Anglais
- Source : Proceedings of the 24th IIR International Congress of Refrigeration: Yokohama, Japan, August 16-22, 2015.
- Formats : PDF
Voir la fiche
-
An artificial neural network for the residual i...
- Auteurs : GAO N., WANG X., XUAN Y., et al.
- Date : 02/2019
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 98
- Formats : PDF
Voir la fiche
-
Calculation for the thermodynamic properties of...
- Auteurs : SÖZEN A., ÖZALP M., ARCAKLIOGLU E.
- Date : 02/2007
- Langues : Anglais
- Source : Applied Thermal Engineering - vol. 27 - n. 2-3
Voir la fiche
-
Dynamic viscosity of low GWP refrigerants in th...
- Auteurs : TOMASSETTI S., MUCIACCIA P. F., PIERANTOZZI M., DI NICOLA G.
- Date : 08/2024
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 164
- Formats : PDF
Voir la fiche