
Synthèse des méthodes d’intelligence artificielle utilisées dans la prédiction des propriétés thermophysiques des nanofluides pour les applications de transfert de chaleur.
A review of artificial intelligence methods in predicting thermophysical properties of nanofluids for heat transfer applications.
Auteurs : BASU A., SAHA A., BANERJEE S., ROY P. C., KUNDU B.
Type d'article : Article de périodique, Synthèse
Résumé
This present review explores the application of artificial intelligence (AI) methods in analysing the prediction of thermophysical properties of nanofluids. Nanofluids, colloidal solutions comprising nanoparticles dispersed in various base fluids, have received significant attention for their enhanced thermal properties and broad application in industries ranging from electronics cooling to renewable energy systems. In particular, nanofluids’ complexity and non-linear behaviour necessitate advanced predictive models in heat transfer applications. The AI techniques, which include genetic algorithms (GAs) and machine learning (ML) methods, have emerged as powerful tools to address these challenges and offer novel alternatives to traditional mathematical and physical models. Artificial Neural Networks (ANNs) and other AI algorithms are highlighted for their capacity to process large datasets and identify intricate patterns, thereby proving effective in predicting nanofluid thermophysical properties (e.g., thermal conductivity and specific heat capacity). This review paper presents a comprehensive overview of various published studies devoted to the thermal behaviour of nanofluids, where AI methods (like ANNs, support vector regression (SVR), and genetic algorithms) are employed to enhance the accuracy of predictions of their thermophysical properties. The reviewed works conclusively demonstrate the superiority of AI models over the classical approaches, emphasizing the role of AI in advancing research for nanofluids used in heat transfer applications.
Documents disponibles
Format PDF
Pages : 31 p.
Disponible
Gratuit
Détails
- Titre original : A review of artificial intelligence methods in predicting thermophysical properties of nanofluids for heat transfer applications.
- Identifiant de la fiche : 30033279
- Langues : Anglais
- Sujet : Technologie
- Source : Energies - vol. 17 - n. 6
- Éditeurs : MDPI
- Date d'édition : 03/2024
- DOI : http://dx.doi.org/https://doi.org/10.3390/en17061351
Liens
Voir d'autres articles du même numéro (2)
Voir la source
Indexation
-
Implementation of artificial intelligence in mo...
- Auteurs : OLABI A. G., HARIDY S., SAYED E. T., RADI M. A., ALAMI A. H., ZWAYYED F., SALAMEH T., ABDELKAREEM M. A.
- Date : 01/2023
- Langues : Anglais
- Source : Energies - vol. 16 - n. 2
- Formats : PDF
Voir la fiche
-
Viscosity prediction for six pure refrigerants ...
- Auteurs : ZHI L. H., HU P., CHEN L. X., et al.
- Date : 04/2018
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 88
- Formats : PDF
Voir la fiche
-
Artificial intelligence models for refrigeratio...
- Auteurs : ADELEKAN D. S., OHUNAKIN O. S., PAUL B. S.
- Date : 11/2022
- Langues : Anglais
- Source : Energy Reports - vol. 8
- Formats : PDF
Voir la fiche
-
An artificial neural network for the residual i...
- Auteurs : GAO N., WANG X., XUAN Y., et al.
- Date : 02/2019
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 98
- Formats : PDF
Voir la fiche
-
A novel characterization methodology for vapor-...
- Auteurs : KHAN A., BRADSHAW C. R.
- Date : 01/2025
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 169
- Formats : PDF
Voir la fiche