Résumé
It’s very difficult to design a completely sealed chiller system, so refrigerant leakage is almost the most common fault in a positive pressure cycle. When a refrigerant leak occurs, chillers will have higher power consumption, even causing health and safety accidents in a closed environment. Leaking refrigerants with high global warming potential (GWP) will accelerate the greenhouse effect. This study presents a semi-supervised machine learning approach to detect refrigerant leakageand all data used for detecting leakage are from pre-installed sensors. A sophisticated experimental method was designed to collect data from a centrifugal chiller and the algorithm of anomaly detection using long short-term memory (LSTM-AD)is discussed with reconstruction error. The LSTMencoder and decoder models are trained on normal data and is used to detect leakage. It’sverified that detection sensitivity can reach 6% and the best detection coverage for leakage 6%, 11% and 16% are respectively 66%, 95% and 95%.
Documents disponibles
Format PDF
Pages : 8 p.
Disponible
Prix public
20 €
Prix membre*
Gratuit
* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)
Détails
- Titre original : A semi-supervised data-driven approach for chiller refrigerant leakage detection.
- Identifiant de la fiche : 30031015
- Langues : Anglais
- Sujet : Technologie
- Source : 3rd IIR conference on HFO Refrigerants and low GWP Blends. Shanghai, China.
- Date d'édition : 05/04/2023
- DOI : http://dx.doi.org/10.18462/iir.HFO2023.0005
Liens
Voir d'autres communications du même compte rendu (28)
Voir le compte rendu de la conférence
Indexation
-
An intelligent fault detection and diagnosis mo...
- Auteurs : WANG Z. W., WANG S. C., LI D., CAO Z. W., HE Y. L.
- Date : 04/2024
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 160
- Formats : PDF
Voir la fiche
-
Integration of dynamic model and classification...
- Auteurs : AGUILERA J. J., MEESENBURG W., SCHULTE A., OMMEN T., MARKUSSEN W. B., ZÜHLSDORF B., POULSEN J. L., FÖRSTERLING S., ELMEGAARD B.
- Date : 13/06/2022
- Langues : Anglais
- Source : 15th IIR-Gustav Lorentzen Conference on Natural Refrigerants (GL2022). Proceedings. Trondheim, Norway, June 13-15th 2022.
- Formats : PDF
Voir la fiche
-
A robust fault diagnosis method for HVAC system...
- Auteurs : ZHU X., CHEN S., CHEN K., LIANG X., REN T., JIN X., DU Z.
- Date : 21/08/2023
- Langues : Anglais
- Source : Proceedings of the 26th IIR International Congress of Refrigeration: Paris , France, August 21-25, 2023.
- Formats : PDF
Voir la fiche
-
Development of a remote refrigerant leakage det...
- Auteurs : KIMURA S., MORIWAKI M., YOSHIMI M., YAMADA S., HIKAWA T., KASAHARA S.
- Date : 10/07/2022
- Langues : Anglais
- Source : 2022 Purdue Conferences. 19th International Refrigeration and Air-Conditioning Conference at Purdue.
- Formats : PDF
Voir la fiche
-
Refrigerant leak detection in industrial vapor ...
- Auteurs : MTIBAA A., SESSA V., GUERASSIMOFF G.
- Date : 05/2024
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 161
- Formats : PDF
Voir la fiche