Document IIF

Détection de fuite de liquide frigorigène dans les installations frigorifiques industrielles à compresseurs de vapeur utilisant l’apprentissage automatique.

Refrigerant leak detection in industrial vapor compression refrigeration systems using machine learning.

Auteurs : MTIBAA A., SESSA V., GUERASSIMOFF G.

Type d'article : Article de la RIF

Résumé

Efficient detection of refrigerant leakage is of utmost importance for industrial refrigeration systems due to its potential to cause substantial impacts on system performance and the environment. Existing research on fault detection and diagnosis in refrigeration systems primarily revolves around solutions based on experimental or laboratory data. However, in the industrial use case, achieving accurate and early detection poses significant challenges. This paper reports on the development of a novel refrigerant leak detection method for industrial vapor compression refrigeration systems. Our method leverages real-world data obtained from operational installations, enabling us to assess its reliability and applicability. The proposed data-driven approach involves predicting the fault-free liquid level in the installation receiver and comparing the actual and predicted levels. In this work, we place emphasis on features and model selection. Dedicated metrics combined with a model comparison method are proposed to evaluate and compare the performance of commonly used regression models with two sets of features to determine the most effective one. Furthermore, we provide insights into the results obtained from the deployment of the proposed method in real-world industrial installations.

Documents disponibles

Format PDF

Pages : 51-61

Disponible

  • Prix public

    20 €

  • Prix membre*

    Gratuit

* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)

Détails

  • Titre original : Refrigerant leak detection in industrial vapor compression refrigeration systems using machine learning.
  • Identifiant de la fiche : 30032309
  • Langues : Anglais
  • Sujet : Technologie
  • Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 161
  • Date d'édition : 05/2024
  • DOI : http://dx.doi.org/10.1016/j.ijrefrig.2024.02.016

Liens


Voir d'autres articles du même numéro (20)
Voir la source