Document IIF
Méthode de diagnostic en ligne des défaillances de retour de liquide au compresseur dans un système de conditionnement d’air à débit de frigorigène variable.
An online compressor liquid floodback fault diagnosis method for variable refrigerant flow air conditioning system.
Résumé
Compressor liquid floodback not only can drop the performance of the variable refrigerant flow (VRF) system, but also may cause mechanical failure. Therefore, this is necessary to perform a timely online diagnosis of that fault. The present paper proposes an online compressor liquid floodback fault diagnosis method for VRF system based on back-propagation neural network (BPNN), which fills the online compressor liquid floodback fault diagnosis knowledge gap. The proposed method main article context as follow: Firstly, the sensors in VRF system record and save the data every three seconds to form the raw dataset. Secondly, after preprocessing the raw dataset, the correlation analysis is used to filter the data variables. Thirdly, the BPNN model is established by using back-propagation neural network algorithm. The testing dataset was used to verify the reliability of the model. The online dataset was used to test the model's online diagnostic capability, and its results were also compared and analyzed to the Classification and Regression Tree (CART) model. This result indicates that the BPNN method has a low degree of over-fitting and high reliability, and its online diagnostic accuracy is up to 99.48%. By comparing results of the method BPNN and CART, it shows that the former is superior to the latter, regardless of the diagnostic accuracy or the online diagnostic stability.
Documents disponibles
Format PDF
Pages : 9-19
Disponible
Prix public
20 €
Prix membre*
Gratuit
* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)
Détails
- Titre original : An online compressor liquid floodback fault diagnosis method for variable refrigerant flow air conditioning system.
- Identifiant de la fiche : 30027362
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 111
- Date d'édition : 03/2020
- DOI : http://dx.doi.org/10.1016/j.ijrefrig.2019.11.024
Liens
Voir d'autres articles du même numéro (19)
Voir la source
-
A hybrid deep forest approach for outlier detec...
- Auteurs : ZENG Y., CHEN H., XU C., CHENG Y., GONG Q.
- Date : 12/2020
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 120
- Formats : PDF
Voir la fiche
-
Development of dynamic modeling framework using...
- Auteurs : WAN H., CAO T., HWANG Y., CHIN S.
- Date : 05/2021
- Langues : Anglais
- Source : 2021 Purdue Conferences. 18th International Refrigeration and Air-Conditioning Conference at Purdue.
- Formats : PDF
Voir la fiche
-
Refrigerant charge fault diagnosis in the VRF s...
- Auteurs : SHI S., LI G., CHEN H., et al.
- Date : 05/02/2017
- Langues : Anglais
- Source : Applied Thermal Engineering - vol. 112
Voir la fiche
-
Generalized correlation of refrigerant mass flo...
- Auteurs : KIM H. J.
- Date : 06/2005
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 28 - n. 4
- Formats : PDF
Voir la fiche
-
Neuro-optimal operation of a variable air volum...
- Auteurs : NING M., ZAHEERUDDIN M.
- Date : 05/2010
- Langues : Anglais
- Source : Applied Thermal Engineering - vol. 30 - n. 5
Voir la fiche