Résumé
This study explores the construction of a refrigerant leakage behavior prediction model with a sufficient level of accuracy for screening high-risk conditions and a light computational load using machine learning. Conventional prediction methods require labor-intensive CAD generation and computationally intensive CFD analysis performed by skilled operators. As a first step, this study attempted to reduce the training load by updating a DNN model trained on a large amount of CFD results for R32 with transfer learning using a small amount of new refrigerant CFD results. A transfer learning model with the input layer updated for R1234yf was able to capture the trends of the CFD results, while a similar model for R290 did not yield satisfactory results, which is estimated to be due to significantly different physical properties related to the output compared to those of the base model.
Documents disponibles
Format PDF
Pages : 8 p.
Disponible
Prix public
20 €
Prix membre*
Gratuit
* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)
Détails
- Titre original : Investigation of refrigerant leakage behavior prediction using machine learning.
- Identifiant de la fiche : 30032720
- Langues : Anglais
- Source : 16th IIR-Gustav Lorentzen Conference on Natural Refrigerants (GL2024). Proceedings. University of Maryland, College Park, Maryland, USA, August 11-14 2024
- Date d'édition : 08/2024
- DOI : http://dx.doi.org/10.18462/iir.gl2024.1207
Liens
Voir d'autres communications du même compte rendu (135)
Voir le compte rendu de la conférence
Indexation
-
Critical aspects in CFD-modelling of R-290 leak...
- Auteurs : ESMAEELIAN J., KHODABANDEH R., PALM B.
- Date : 08/2024
- Langues : Anglais
- Source : 16th IIR-Gustav Lorentzen Conference on Natural Refrigerants (GL2024). Proceedings. University of Maryland, College Park, Maryland, USA, August 11-14 2024
- Formats : PDF
Voir la fiche
-
Computational fluid dynamics analysis of flamma...
- Auteurs : ZHANG S., CHEN G., LI Z., FANG J.
- Date : 02/2022
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 134
- Formats : PDF
Voir la fiche
-
CFD analysis of propane dispersion in an indoor...
- Auteurs : RIGHETTI G., CALATI M., LONGO G. A., MANCIN S., ZILIO C.
- Date : 01/09/2021
- Langues : Anglais
- Source : 6th IIR Conference on Thermophysical Properties and Transfer Processes of Refrigerants
- Formats : PDF
Voir la fiche
-
Combustion suppression effect of additives for ...
- Auteurs : HIGASHI T., DANG C., HIHARA E., et al.
- Date : 24/08/2019
- Langues : Anglais
- Source : Proceedings of the 25th IIR International Congress of Refrigeration: Montréal , Canada, August 24-30, 2019.
- Formats : PDF
Voir la fiche
-
Experimental study on the influence of trifluor...
- Auteurs : ZHONG Q., HUANG Y., ZHAO H., WANG X., ZHANG Y., SHEN J.
- Date : 03/2022
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 135
- Formats : PDF
Voir la fiche