Document IIF
Nouvelle méthodologie basée sur l’apprentissage par renforcement approfondi pour prédire la consommation énergétique des systèmes de CVC à court terme
A novel deep reinforcement learning based methodology for short-term HVAC system energy consumption prediction.
Résumé
Short-term energy consumption prediction has fundamental importance in many HVAC system management tasks, such as demand-side management, short-term maintenance, etc. Currently, the prevailing data-driven techniques, especially supervised machine learning methods, are widely applied for short- term energy consumption prediction. Deep reinforcement learning (DRL), as the state-of-the-art machine learning techniques, have been applied for HVAC system control, but rarely for energy consumption prediction. In this paper, a DRL algorithm, namely Deep Deterministic Policy Gradient (DDPG), is firstly introduced for short-term HVAC system energy consumption prediction. Moreover, Autoencoder (AE), which is powerful in processing data in their raw form, is incorporated into DDPG method to extract the high-level features of state space and optimize the prediction model. The operation data of the ground source heat pump (GSHP) system of an office building in Henan province, China is used to train and assess the proposed models. The results demonstrate that the proposed DDPG based models can achieve better prediction performance than common supervised models like BP Neural Network and Support Vector Machine. This study is an enlightening work which may inspire other researchers to tap the potential of DRL algorithms in this field.
Documents disponibles
Format PDF
Pages : 39-51
Disponible
Prix public
20 €
Prix membre*
Gratuit
* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)
Détails
- Titre original : A novel deep reinforcement learning based methodology for short-term HVAC system energy consumption prediction.
- Identifiant de la fiche : 30026962
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 107
- Date d'édition : 11/2019
- DOI : http://dx.doi.org/10.1016/j.ijrefrig.2019.07.018
Liens
Voir d'autres articles du même numéro (32)
Voir la source
Indexation
-
Liquefied Natural Gas and Hydrogen Regasificati...
- Auteurs : GARCIA-LAJARA J. I., REYES-BELMONTE M. Á.
- Date : 11/2022
- Langues : Anglais
- Source : Energies - vol. 15 - n. 22
- Formats : PDF
Voir la fiche
-
Prévisions de la performance hivernale des syst...
- Auteurs : LIU Z., ZHANG X., CHEN B., et al.
- Date : 11/2007
- Langues : Chinois
- Source : HV & AC - vol. 37 - n. 205
- Formats : PDF
Voir la fiche
-
Régulation prévisionnelle basée sur des réseaux...
- Auteurs : ZHOU E., MEI N., DONG H., et al.
- Date : 05/2007
- Langues : Chinois
- Source : HV & AC - vol. 37 - n. 198
- Formats : PDF
Voir la fiche
-
Investigations on optimal discharge pressure in...
- Auteurs : YIN X., CAO F., WANG J., et al.
- Date : 10/2019
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 106
- Formats : PDF
Voir la fiche
-
Prediction of thermal comfort index predicted m...
- Auteurs : LIU S. B., CAO Q., FU M. X., WANG Y. Y.
- Date : 09/09/1997
- Langues : Anglais
- Source : International Symposium on Air Conditioning in High Rise Buildings - 1997
- Formats : PDF
Voir la fiche