Recommandé par l'IIF / Document IIF

Prévision des classifications d'inflammabilité des frigorigènes par un réseau neuronal artificiel et un modèle de forêt d'arbres décisionnels.

Prediction of flammability classifications of refrigerants by artificial neural network and random forest model.

Auteurs : DEVOTTA S., CHELANI A., VONSILD A.

Type d'article : Article de la RIF

Résumé

The flammability classification of refrigerants, as per existing standards, is bounded by multiple boundaries and involves many error bands and uncertainties. Further, experimental determination involves significant efforts and costs. Therefore, as a preamble to any refrigerant development efforts, it is desirable to have an assessment method, to predict a priori, the flammability class. In this work, the flammability classifications are predicted by both Artificial Neural Network and Random Forest models using the composition of the refrigerant molecules as predictors, including number of C, H, F, Cl, Br, I, O and N atoms and number of double bonds. Additionally, HR, a ratio between the total atomic mass of H atoms to the molecule's molar mass, is also used to account for the fact that a molecule's flammability increases with increase in number of H atom in the molecule. Both ANN and RF models predict the flammability classifications of totally 179 refrigerants (47 single components and 132 blends) accurately except for three and one refrigerant blend respectively. The level of certainty by the proposed models is considered to be acceptable for a preliminary assessment.

Documents disponibles

Format PDF

Pages : 947-955

Disponible

  • Prix public

    20 €

  • Prix membre*

    Gratuit

* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)

Détails

  • Titre original : Prediction of flammability classifications of refrigerants by artificial neural network and random forest model.
  • Identifiant de la fiche : 30029197
  • Langues : Anglais
  • Sujet : Réglementation, Alternatives aux HFC
  • Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 131
  • Date d'édition : 11/2021
  • DOI : http://dx.doi.org/10.1016/j.ijrefrig.2021.07.021
  • Document disponible en consultation à la bibliothèque du siège de l'IIF uniquement.

Liens


Voir d'autres articles du même numéro (95)
Voir la source