Document IIF
Réseau convolutif amélioré par des données basé sur la prédiction des heures de démarrage et d’arrêt d’un système de conditionnement d’air.
Data-enhanced convolutional network based on air conditioning system start/stop time prediction.
Résumé
Most enterprise workshop operators frequently adjust the start/stop time of air conditioning systems based on indoor and outdoor temperatures and humidity to accommodate changing demand and weather conditions. However, relying on personal subjective experience for these adjustments often leads to operational delays or energy waste due to the lack of precision in determining optimal timing. Predicting air conditioning system start and stop times is crucial for energy consumption and savings in HVAC systems. Traditional data-driven methods have been insufficient in this regard, as they mainly focus on feature mapping and overlook the dynamic coupling relationships of process variables, resulting in subpar predictions. In response to this challenge, the paper introduces a novel approach known as the Periodicity and Long-Term Convolutional Neural Network (PLCNN). This method converts one-dimensional regression prediction data into two-dimensional data containing time series features to capture the dynamic coupling characteristics of the air conditioning system while maintaining the independent variation relationships of features. Experimental results using real factory floor data have demonstrated the superior performance of the PLCNN method. Specifically, this method achieved a 14.96% lower error rate compared to the traditional method and an 8.18% improvement compared to the deep learning method. Moreover, the implementation of the PLCNN method in the optimal control of air conditioning systems led to a significant 19.43% reduction in total monthly energy consumption. In conclusion, the proposed method offers a promising alternative to traditional approaches to forecasting and provides a solution to the common challenges encountered in traditional prediction tasks.
Documents disponibles
Format PDF
Pages : 372-382
Disponible
Prix public
20 €
Prix membre*
Gratuit
* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)
Détails
- Titre original : Data-enhanced convolutional network based on air conditioning system start/stop time prediction.
- Identifiant de la fiche : 30033235
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 169
- Date d'édition : 01/2025
- DOI : http://dx.doi.org/10.1016/j.ijrefrig.2024.11.006
Liens
Voir d'autres articles du même numéro (33)
Voir la source
Indexation
-
The Energy Cost of Cold Thermal Discomfort in t...
- Auteurs : ALNUAIMI A. N., NATARAJAN S.
- Date : 05/2020
- Langues : Anglais
- Source : Buildings - vol. 10 - n. 5
- Formats : PDF
Voir la fiche
-
Energy Consumption Analysis for Coupling Air Co...
- Auteurs : KUSNANDAR, PERMANA I., CHIANG W., WANG F., LIOU C.
- Date : 07/2022
- Langues : Anglais
- Source : Energies - vol. 15 - n. 13
- Formats : PDF
Voir la fiche
-
Research on packet control strategy of constant...
- Auteurs : LIU Q., FU G., MA G., HE J., LI W.
- Date : 12/2022
- Langues : Anglais
- Source : Energies - vol. 15 - n. 23
- Formats : PDF
Voir la fiche
-
Performance characteristics of a combined air c...
- Auteurs : HA D., JEONG J. H.
- Date : 01/2015
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 49
- Formats : PDF
Voir la fiche
-
Uniformity of Supply Air in the Plenum for Unde...
- Auteurs : FAN X., YU T., LIU P., LI X.
- Date : 09/2022
- Langues : Anglais
- Source : Energies - vol. 15 - n. 17
- Formats : PDF
Voir la fiche