Document IIF
Estimation de la température d’évaporation des systèmes de réfrigération basée sur des capteurs logiciels et données de vibration.
Evaporating temperature estimation of refrigeration systems based on vibration data-driven soft sensors.
Auteurs : SEIXAS BUSSE DE SIQUEIRA NASCIMENTO A., ZOMER MACHADO J. P., DOS SANTOS COELHO L., COSTA FLESCH R. C.
Type d'article : Article de la RIF
Résumé
The evaluation of the operating conditions of refrigeration compressors once installed in household appliances is challenging due to the need to install pressure transducers, a process which requires system evacuation and refrigerant reintroduction. In addition, changes in the piping modify the characteristics of the original product. This paper proposes a soft-sensing technique based on vibration measurements of the compressor surface to predict the evaporating temperature. Different machine learning (ML) techniques are evaluated as data-driven prediction models, namely multilayer perceptron (MLP) neural networks, least squares boosting, generalized additive model, random forest, extreme learning machine, and random vector functional link neural networks. These techniques were applied to data obtained from a test rig designed to emulate compressor operation in a refrigeration system, with an operating envelope from -30 °C to -10 °C for the evaporating temperature and from 34 °C to 54 °C for the condensing temperature. The results showed that, with a single vibration measurement point, it was possible to use an MLP technique to estimate the evaporating temperature with a root mean squared error of 1.74 °C in a non-intrusive way. For the other prediction techniques, the errors were a bit higher than for the MLP, but the maximum error value was about 2.5 °C in all cases.
Documents disponibles
Format PDF
Pages : 288-296
Disponible
Prix public
20 €
Prix membre*
Gratuit
* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)
Détails
- Titre original : Evaporating temperature estimation of refrigeration systems based on vibration data-driven soft sensors.
- Identifiant de la fiche : 30032860
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 168
- Date d'édition : 12/2024
- DOI : http://dx.doi.org/10.1016/j.ijrefrig.2024.08.020
Liens
Voir d'autres articles du même numéro (63)
Voir la source
Indexation
- Thèmes : Compresseurs
- Mots-clés : Compresseur; Frigorigène; Apprentissage automatique; Réseau neuronal artificiel; Banc d'essai; Experimentation
-
Proposal and Experimental Study on a Diagnosis ...
- Auteurs : LI K., SUN Z., JIN H., XU Y., GU J., HUANG Y., ZHANG Q., SHEN X.
- Date : 03/2022
- Langues : Anglais
- Source : Applied Sciences - vol. 12 - n. 6
- Formats : PDF
Voir la fiche
-
Informed machine learning to develop a reduced ...
- Auteurs : YOUSAF S., BRADSHAW C. R., KAMALAPURKAR R., SAN O.
- Date : 2022
- Langues : Anglais
- Source : 2022 Purdue Conferences. 19th International Refrigeration and Air-Conditioning Conference at Purdue.
- Formats : PDF
Voir la fiche
-
Parallel deep neural network for scalable coupl...
- Auteurs : CHEN S., LIU Z., CHEN K., ZHU X., JIN X., DU Z.
- Date : 21/08/2023
- Langues : Anglais
- Source : Proceedings of the 26th IIR International Congress of Refrigeration: Paris , France, August 21-25, 2023.
- Formats : PDF
Voir la fiche
-
Development of deep learning artificial neural ...
- Auteurs : HOANG H. M., AKERMA M., MELLOULI N., LE MONTAGNER A., LEDUCQ D., DELAHAYE A.
- Date : 11/2021
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 131
- Formats : PDF
Voir la fiche
-
Prediction of Date Fruit Quality Attributes dur...
- Auteurs : MOHAMMED M., MUNIR M., ALJABR A.
- Date : 06/2022
- Langues : Anglais
- Source : Foods - vol. 11 - n. 11
- Formats : PDF
Voir la fiche