A control-oriented dynamic model of air flow in a single duct HVAC.

Number: pap. 3403

Author(s) : RAISONI R., RAMAN N. S., BAROOAH P., et al.

Summary

A model of a variable air volume (VAV) system is developed that can predict air flow rates, fan pressure rise, and fan power consumption in response to changes in fan speed and damper positions. The system consists of a fan, ductwork, and a number of dampers, one in each VAV box. The model can be used for conducting simulation studies of how advanced control algorithms that seek to provide various services (energy efficiency, personalized comfort, and demand-side flexibility to the grid) may behave when deployed in a building with an existing climate control system, or to do model-based control computations for such services. Comparison of the model’s predictions with experimental data from a small commercial building is presented for the single-zone version of the model. The multi-zone model structure is described, but its validation is left for future work. Due to the strong non-linearities in the steady state relation between inputs and outputs, and due to the fast transient response observed in experiments, the dynamic model is constructed to be of Hammerstein type, with a linear dynamic system in series with a static nonlinear model.

Available documents

Format PDF

Pages: 10

Available

  • Public price

    20 €

  • Member price*

    15 €

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: A control-oriented dynamic model of air flow in a single duct HVAC.
  • Record ID : 30024883
  • Languages: English
  • Source: 2018 Purdue Conferences. 5th International High Performance Buildings Conference at Purdue.
  • Publication date: 2018/07/09

Links


See other articles from the proceedings (88)
See the conference proceedings