Summary
Expansion work recovery by two-phase ejector is known to be beneficial to vapor compression cycle performance. However, one of the biggest challenges with ejector vapor compression cycle is that the ejector cycle performance is sensitive to working condition changes which are common in real world applications. Different working conditions require different ejector geometries to achieve maximum performance. Slightly different geometries may result in substantially different COPs under the same conditions. Ejector motive nozzle throat diameter (motive nozzle restrictiveness) is one of the key parameters that can significantly affect COP. This paper presents a new motive nozzle restrictiveness control mechanism for two-phase ejectors used in vapor compression cycles, which has the advantages of being simple, potentially less costly and less vulnerable to clogging. The new control mechanism can possibly avoid the additional frictional losses of previously proposed ejector control mechanisms using adjustable needle. The redesigned ejector utilizes an adjustable vortex at the motive inlet to control the nozzle restrictiveness on the flow expanded in the motive nozzle. An adjustable nozzle based on this new control mechanism was designed and manufactured for experiments with R134a. The experimental results showed that, without changing the nozzle geometry, the nozzle restrictiveness on the two-phase flow can be adjusted over a wide range. Under the same inlet and outlet conditions, the mass flow rate through the nozzle can be reduced by 36% of the full load. This feature could be very useful for the future application of ejector in mobile or stationary systems under changing working conditions.
Available documents
Format PDF
Pages: 10 p.
Available
Public price
20 €
Member price*
15 €
* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).
Details
- Original title: A new control mechanism for two-phase ejector in vapor compression cycles using adjustable motive nozzle inlet vortex.
- Record ID : 30018786
- Languages: English
- Source: 2016 Purdue Conferences. 16th International Refrigeration and Air-Conditioning Conference at Purdue.
- Publication date: 2016/07/11
Links
See other articles from the proceedings (274)
See the conference proceedings
Indexing
-
Comparison of various motive flow control metho...
- Author(s) : ELBEL S., LAWRENCE N., ZHU J.
- Date : 2017/07/20
- Languages : English
- Source: 8th international conference on compressors and refrigeration, 2017.
- Formats : PDF
View record
-
Measurement of pressure profile of vortex flash...
- Author(s) : ZHU J., ELBEL S.
- Date : 2018/07/09
- Languages : English
- Source: 2018 Purdue Conferences. 17th International Refrigeration and Air-Conditioning Conference at Purdue.
- Formats : PDF
View record
-
A review on current status of capacity control ...
- Author(s) : GULLO P., KÆRN M. R., HAIDA M., ELBEL J. S.
- Date : 2020/11
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 119
- Formats : PDF
View record
-
Simulation of shock waves in supersonic flow of...
- Author(s) : SERRANO BERANA M., NAKAGAWA M.
- Date : 2012/06/25
- Languages : English
- Source: 10th IIR-Gustav Lorentzen Conference on Natural Working Fluids (GL2012). Proceedings. Delft, The Netherlands, June 25-27, 2012.
- Formats : PDF
View record
-
Measurement of two-phase flow in a transcritica...
- Author(s) : ZHANG Y., DENG J., LI Y.
- Date : 2017/07/20
- Languages : English
- Source: 8th international conference on compressors and refrigeration, 2017.
- Formats : PDF
View record