IIR document

A new empirical mass flow correlation and mass flow rate characteristics of R600a through novel rotary-baffle curved-channel electronic expansion valve.

Author(s) : YANG Y., HUANG D., ZHAO R., WEI X.

Type of article: IJR article

Summary

The novel rotary-baffle curved-channel electronic expansion valve (RBCC-EEV) has appeared in industry to replace a capillary tube as the variable expansion device in household refrigerators. However, due to the structure differences between the RBCC-EEV and the traditional orifice-type EEV, the previous empirical mass flow correlation inapplicable. In this paper, a new empirical correlation is proposed based on the structure and regulation principle of the novel RBCC-EEV, and the effects of different operating conditions on the mass flow rate of R600a flowing through two different RBCC-EEVs are experimentally investigated. The new empirical correlation introduces a centrifugal force coefficient and a variable length coefficient to represent the effect of asymmetric cavitation phenomenon and super-linear mass flow rate characteristics. The experimental results show a rise in the mass flow rate with increasing inlet pressure, inlet subcooling and opening ratio. Under the test range, the flow pattern of R600a flowing through the RBCC-EEV is chocked flow. Moreover, the proposed new empirical mass flow correlation agrees well with the experimental data. For 95.7 % of the prediction value, the relative deviation is below 15 %, while 89.0 % exhibit a relative deviation less than 10 %. The average deviation and standard deviation stand at 6.52 % and 4.56 %, respectively.

Available documents

Format PDF

Pages: 70-78

Available

  • Public price

    20 €

  • Member price*

    Free

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: A new empirical mass flow correlation and mass flow rate characteristics of R600a through novel rotary-baffle curved-channel electronic expansion valve.
  • Record ID : 30032816
  • Languages: English
  • Subject: Technology
  • Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 168
  • Publication date: 2024/12
  • DOI: http://dx.doi.org/10.1016/j.ijrefrig.2024.07.011

Links


See other articles in this issue (63)
See the source