Summary
Miniature scroll compressors (MSCs) are recognized for their superior characteristics—compact design, silent operation and energy-saving performance. One of its main challenges is to maintain dynamic sealing between the fixed and orbiting scrolls during the operation. This paper adopts a passive magnet mechanism (PMM) to balance the axial gas force in MSCs. The PMM with an integral magnet configuration (IMC) is investigated first, and the dimensions of the magnet and fixed ring are found as the paramount factors to determine the magnitude of axial magnetic force. However, the IMC is unable to follow the unsteady characteristics of the target axial gas force, so the scrolls will experience a large period of over-sealing during its operation.
To overcome this limitation, an innovative modular magnet configuration (MMC) is proposed and investigated. The height of each magnet segment is treated as individual design variable, and genetic algorithm optimization is carried out to seek for the best force balance performance according to two indices—maximum force difference (MFD) and integral-average force difference (IAFD). With precise design of each magnet segment, the MMC is able to provide unsteady magnetic force and thus better balance performance. Compared with the IMC, the improvements are up to 52 % reduction of MFD and 66 % reduction of IAFD. The derived superior MMC designs reveal a common characteristic that the “N” and “E” magnets have short segments at their outer fringe and the “S” and “W” magnets have short segments at their inner fringe. The axial magnetic force characteristics of the IMC and MMC are validated by prototype experiments.
Available documents
Format PDF
Pages: 42-52
Available
Public price
20 €
Member price*
Free
* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).
Details
- Original title: Design passive magnetic mechanisms with modular magnet configuration for axial gas force balance in miniature scroll compressors.
- Record ID : 30032587
- Languages: English
- Subject: Technology
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 166
- Publication date: 2024/10
- DOI: http://dx.doi.org/10.1016/j.ijrefrig.2024.06.007
Links
See other articles in this issue (20)
See the source
-
Energy efficient refrigerator without greenhous...
- Author(s) : MULLER C., VASILE C., KEITH B., et al.
- Date : 2013
- Languages : Russian
- Source: Vestnik Mezdunarodarnoj Akademii Holoda - n. 8
View record
-
Development and experimental results from a 1 k...
- Author(s) : BAHL C. R. H., ENGELBRECHT K., ERIKSEN D., et al.
- Date : 2012/09/17
- Languages : English
- Source: 5th International Conference on Magnetic Refrigeration at Room Temperature (Thermag V). Proceedings: Grenoble, France, September 17-20, 2012.
- Formats : PDF
View record
-
An experimental study on performance of Li-Fe-C...
- Author(s) : SINGH P., SRIKANTI K., CHANDRA M., GOPALAN R., SESHADRI S.
- Date : 2022
- Languages : English
- Source: 2022 Purdue Conferences. 19th International Refrigeration and Air-Conditioning Conference at Purdue.
- Formats : PDF
View record
-
Rotary magnetic chillers with permanent magnets.
- Author(s) : KITANOVSKI A., EGOLF P. W., POREDOS A.
- Date : 2012/06
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 35 - n. 4
- Formats : PDF
View record
-
Initial experimental results from a rotary perm...
- Author(s) : APREA C., GRECO A., MAIORINO A., et al.
- Date : 2014/07
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 43
- Formats : PDF
View record