IIR document

Investigation of an ejector powered double-effect absorption/recompression refrigeration cycle.

Author(s) : SIOUD D., BOUROUIS M., BELLAGI A.

Type of article: Article, IJR article

Summary

The objective of the present work is to investigate the feasibility and the eventual improvement in performance of an ejector powered water/lithium bromide double-effect absorption/recompression refrigeration cycle driven by high temperature heat sources. The results show that the cycle performance parameters are significantly affected by the presence of the ejector and its characteristics. Further, the COP responses to variation of working conditions are different from those observed for the conventional double-effect absorption refrigeration cycles. The maximum COP values of the ejector cycle occur at HP-generator temperatures lower by 20?°C to 25?°C than those of the conventional double-effect absorption cycle. The enhancement factor of the COP varies between 1.34 and 1.70 at a driving steam temperature ranging from 240?°C to 340?°C. As regards the ejector design, the ratio of HP-generator pressure and driving steam pressure should be kept as low as possible. The geometry of the design should allow for the maximum entrainment ratio feasible.

Available documents

Format PDF

Pages: 453-468

Available

  • Public price

    20 €

  • Member price*

    Free

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: Investigation of an ejector powered double-effect absorption/recompression refrigeration cycle.
  • Record ID : 30025527
  • Languages: English
  • Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 99
  • Publication date: 2019/03
  • DOI: http://dx.doi.org/10.1016/j.ijrefrig.2018.11.042

Links


See other articles in this issue (45)
See the source