Modelling and preliminary design of a variable-BVR rotary valve expander with an integrated linear generator.
Number: pap.1539
Author(s) : GUSEV S., ZIVIANI D., VIAENE J. de, et al.
Summary
The Organic Rankine Cycle (ORC) is currently one of the most suitable technologies to convert waste heat into mechanical work or electricity. While large and medium scale systems are widely available on the market for various temperature and power ranges, small-scale ORCs below 50 kWe are still in a pre-commercial phase because of the relatively high specific cost per kW and the lack of technologically mature and high efficient expanders. Small-scale ORC installations for automotive applications operate at variable heat source profiles combined with the fluctuating power demand from a vehicle. The prediction of an optimum operating point is challenging. Exhaust gases are a limited heat source, therefore the more heat is recovered at an optimal cycle efficiency level, the more power is produced. By using advanced cycle architectures (e.g. trilateral ORCs, partial-evaporating ORCs, zeotropic mixture ORCs, etc.) and the right fluids, an optimum can be found. An expander with a variable built-in volume ratio (BVR) can allow to operate at optimal conditions within the whole range of pressures imposed by the variable heat source and heat sink. Adjustable expanders are known but mainly limited to large-scale applications. Neither a positive displacement expander, nor a turbine can provide an optimal expansion of a working fluid in a wide range of operation conditions. As a response to this challenge, the concept of a variable-BVR piston expander with an integrated linear generator is proposed in this paper. The internal part-load control is based on a rotary valve which controls the suction and discharge processes in the expander. An analytic model has been developed to relate the position of the valve with the motion of the piston. By means of a deterministic model, the influence of the main design parameters is investigated. A preliminary design based on the expander model results is described and the predicted performance over the operating range of interest is discussed.
Available documents
Format PDF
Pages: 10 p.
Available
Public price
20 €
Member price*
15 €
* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).
Details
- Original title: Modelling and preliminary design of a variable-BVR rotary valve expander with an integrated linear generator.
- Record ID : 30019463
- Languages: English
- Source: 2016 Purdue Conferences. 23rd International Compressor Engineering Conference at Purdue.
- Publication date: 2016/07/11
Links
See other articles from the proceedings (122)
See the conference proceedings
Indexing
-
Simulación numérica de turbina scroll de expans...
- Author(s) : LEMORT V., QUOILIN S., LEBRUN J.
- Date : 2010/02
- Languages : Spanish
- Source: Frío Calor Aire acondicionado - vol. 38 - n. 422
- Formats : PDF
View record
-
Numerical simulation of a scroll expander for u...
- Author(s) : LEMORT V., QUOILIN S., LEBRUN J.
- Date : 2008/07/14
- Languages : English
- Source: 2008 Purdue Conferences. 19th International Compressor Engineering Conference at Purdue & 12th International Refrigeration and Air-Conditioning Conference at Purdue [CD-ROM].
- Formats : PDF
View record
-
Testing and modelling a scroll expander integra...
- Author(s) : LEMORT V., QUOILIN S., CUEVAS C., et al.
- Date : 2009/10
- Languages : English
- Source: Applied Thermal Engineering - vol. 29 - n. 14-15
View record
-
Experimental and numerical investigation of a r...
- Author(s) : PARTHOENS A., GUILLAUME L., DUMONT O., et al.
- Date : 2018/07/09
- Languages : English
- Source: 2018 Purdue Conferences. 24th International Compressor Engineering Conference at Purdue.
- Formats : PDF
View record
-
CFD approaches applied to a single-screw expander.
- Author(s) : ZIVIANI D., SUMAN A., GABRIELLONI J., et al.
- Date : 2016/07/11
- Languages : English
- Source: 2016 Purdue Conferences. 23rd International Compressor Engineering Conference at Purdue.
- Formats : PDF
View record