IIR document
Simulation of solid-state magnetocaloric refrigeration systems with Peltier elements as thermal diodes.
Author(s) : MONFARED B.
Type of article: Article, IJR article
Summary
Magnetic refrigeration as an alternative for vapor-compression technology has been the subject of many recent studies. Most of the studies focus on systems with limited cycle frequency in which a fluid transfers heat to and from the magnetocaloric material. A suggested solution for increasing the frequency is use of solid-state magnetic refrigeration in which thermal diodes guide the heat from the cold end to the warm end. In this work a solid-state refrigeration system with Peltier elements as thermal diodes is modeled in details unprecedented. The performance of Peltier elements and magnetocaloric materials under their transient working conditions after reaching cyclic steady state are simulated by two separate computer models using finite element method and finite volume method. The models, in parts and as a whole, are verified. The verified finite element model is used for a parametric study and the results are analyzed.
Available documents
Format PDF
Pages: 322-330
Available
Public price
20 €
Member price*
Free
* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).
Details
- Original title: Simulation of solid-state magnetocaloric refrigeration systems with Peltier elements as thermal diodes.
- Record ID : 30020112
- Languages: English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 74
- Publication date: 2017/02
Links
See other articles in this issue (56)
See the source
-
Thermoelectric–magnetocaloric energy conversion.
- Author(s) : TOMC U., TUSEK J., KITANOVSKI A., et al.
- Date : 2012/09/17
- Languages : English
- Source: 5th International Conference on Magnetic Refrigeration at Room Temperature (Thermag V). Proceedings: Grenoble, France, September 17-20, 2012.
- Formats : PDF
View record
-
A new magnetocaloric refrigeration principle wi...
- Author(s) : TOMC U., TUSEK J., KITANOVSKI A., et al.
- Date : 2013/09
- Languages : English
- Source: Applied Thermal Engineering - vol. 58 - n. 1-2
View record
-
A numerical comparison of a parallel-plate AMR ...
- Author(s) : TOMC U., TUSEK J., KITANOVSKI A., et al.
- Date : 2014/01
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 37 - n. 1
- Formats : PDF
View record
-
Numerical analysis of an active magnetic regene...
- Author(s) : ZHANG R., ZHANG X., QIAN M., BAHL C. R. H.
- Date : 2021/09
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 129
- Formats : PDF
View record
-
Simulation of magnetic refrigeration systems wi...
- Author(s) : MONFARED B.
- Date : 2016/09/11
- Languages : English
- Source: 7th International Conference on Magnetic Refrigeration at Room Temperature (Thermag VII). Proceedings: Turin, Italy, September 11-14, 2016.
- Formats : PDF
View record