IIR document

24-hour cooling of a building by a PCM integrated adsorption system.

Author(s) : POSHTIRI A. H., JAFARI A.

Type of article: Article, IJR article

Summary

This study presents a theoretical investigation into integration of phase change materials (PCMs) with an adsorption cooling system in order to provide 24-hour air conditioning. A latent heat storage unit containing PCM is used to store solar energy during the daytime, and at nighttime the conserved thermal energy and an auxiliary heater drive the adsorption chiller.The system adopts a cooling channel to reduce the air temperature.The air flow to the channel is provided by use of fans and at different fresh air ratios (FR). Room temperature and the room’s maximum cooling demand for which thermal comfort can be achieved are estimated. In addition, the effects of different parameters on room temperature and solar fraction are studied. It is indicated that an optimum ACH value exists for which the room temperature is the lowest. Also, rise of ACH and FR decrease solar fraction and increase auxiliary energy consumption. It is found that when ACH = 4 and FR = 20%, daily solar fraction is 0.76 and 217 MJ of auxiliary energy is required during the 24 hours. Under this condition, thermal comfort is achieved for a maximum cooling demand of 4000W during the 24 hours.

Available documents

Format PDF

Pages: 57-75

Available

  • Public price

    20 €

  • Member price*

    Free

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: 24-hour cooling of a building by a PCM integrated adsorption system.
  • Record ID : 30022309
  • Languages: English
  • Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 79
  • Publication date: 2017/07
  • DOI: http://dx.doi.org/10.1016/j.ijrefrig.2017.03.025

Links


See other articles in this issue (20)
See the source